
Polynomial Approximation Using
Set-Based Particle Swarm Optimization

Jean-Pierre van Zyl1(B) and Andries P. Engelbrecht1,2

1 Division of Computer Science, Stellenbosch University, Stellenbosch, South Africa
{20706413,engel}@sun.ac.za

2 Department of Industrial Engineering, Stellenbosch University,
Stellenbosch, South Africa

Abstract. This paper introduces a new approach to solving regression
problems by using a particle swarm optimization algorithm to find opti-
mal polynomial regressions to these problems. Polynomial regression is
defined as a multi-objective optimization problem, with the goals to find
both an optimal combination of terms in the polynomial and optimal
values of the coefficients of the terms, in order to minimize the approxi-
mation error. This paper shows that a set-based PSO works well to find
the optimal term structure of the target polynomials in low dimensions,
and holds promise for improved performance in higher dimensions. The
results of the set-based PSO are compared to the results of a Binary PSO
on the same problems. Finally, this paper explores possible solutions to
create a hybrid algorithm that can find both the optimal term structure
and the coefficients of the found terms.

Keywords: Particle swarm optimization · Polynomial regression ·
Adaptive coordinate descent · Set-based particle swarm optimization

1 Introduction

A polynomial is a functional mapping, f : Rnx → R, relating an nx-dimensional
input space to a one-dimensional output space. Polynomial regression refers to
the process of finding an optimal polynomial that accurately approximates an
arbitrary functional mapping. While a number of approaches exist, this paper
develops a novel set-based optimization approach to find polynomial mappings.

Polynomial regression is here defined as a multi-objective optimization prob-
lem, using a set-based solution representation. The objectives are to find: (1)
the smallest number of terms and lowest polynomial order, and (2) optimal
coefficient values for these terms in order to minimize the approximation error.

This paper determines the viability of using a set-based particle swarm opti-
mization (SBPSO) algorithm to find an optimal term set in order to achieve the
first objective. As a precursor to future improvements to this approach, in order
to meet the second objective, the suitability of an interleaved, dual optimization
process is investigated to find both optimal term architecture and coefficients.
c� Springer Nature Switzerland AG 2021
Y. Tan and Y. Shi (Eds.): ICSI 2021, LNCS 12689, pp. 210–222, 2021.
https://doi.org/10.1007/978-3-030-78743-1_19

Polynomial Approximation Using Set-Based Particle Swarm Optimization 211

This is achieved in a preliminary study by applying adaptive coordinate descent
(ACD) [10] to find the coefficients of the found term sets’ components. To the
knowledge of the authors, this a first approach to polynomial regression using a
set-based optimization algorithm.

The SBPSO algorithm is empirically evaluated on a number of problems to
determine its ability to select optimal combination of terms, and is compared
to a binary particle swarm optimization (BPSO) [7] algorithm’s ability to select
terms. The combined algorithm with ACD is compared to a standard non-set
based particle swarm optimization (PSO) [6] algorithm. SBPSO is shown to be
able to find an optimal set of terms by itself, and the preliminary results of the
proposed hybrid algorithm shows that it is also able to find an optimal set of
terms and optimal coefficients.

It is shown that the SBPSO and ACD hybrid algorithm performs well when
applied on low dimensional problems and hold promise for improvement in higher
dimensions. The hybrid algorithm is able to approximate the source polynomial
from the input data both in structure and in coefficients.

Section 2 discusses the concepts needed to implement the work in this paper,
and Section 3 outlines how existing optimization algorithms can be combined to
approximate polynomial mappings. Section 4 contains the empirical procedure,
while Section 5 discusses the results followed by the conclusion in Section 6.

2 Background

This section outlines background information on polynomial regression, PSOs,
SBPSOs, and ACD as used in this paper.

2.1 Polynomial Regression

Polynomials are made of constituent parts called terms or monomials. These
monomials are defined as the product of one or more input variables, each raised
to a power and preceded by a coefficient:

ai

�
xn

j (1)

The goal of polynomial regression is to find the best possible polynomial to
accurately approximate a functional mapping, f : Rnx → R, embedded in a
data-set, D = {(xp, yp)|p = 1, . . . , np}; where xp = (x1p, x2p, . . . , xnxp) is a
vector of input variables, yp is the corresponding desired output value, p refers
to a specific data point in D, nx is the number of input variables, and np = |D|
is the total number of data points.

Univariate polynomials have nx = 1, and are presented in the general form:

f(x) =
no�

j=0

ajxj = a0 + a1x + a2x
2 + · · · + ano

xno (2)

212 J. van Zyl and A. P. Engelbrecht

where no is the order of the polynomial. Multivariate polynomials have nx > 1,
and have the general form:

f(x) = a0 +
nt�

t=1

at

nq�

q=1

xλq
q (3)

where nt is the number of monomials, at is the coefficient of the tth monomial,
nq is the number of variables in the tth monomial, and λq is the order of the
corresponding variable.

The goal of finding the best polynomial approximation can be broken down
into the following sub-goals: (1) to find optimal monomials, (2) to find the small-
est number of monomials, (3) to minimize the order of the monomials, and (4)
to find the best coefficient values of these monomials.

The rationale of these sub-goals is to produce a polynomial that minimizes the
approximation error and the complexity of the polynomial. The structure of the
polynomial is minimized to prevent overfitting, while underfitting is prevented
by minimizing the approximation error. Approximation error is estimated using
the mean squared error (MSE), defined as

E =
1
np

np�

p=1

(yp − ŷp)2 (4)

Polynomial approximation is a multi-objective optimization problem, defined as:

minimize F (f(x), D) = E(f(x), D) + λP (f(x)) (5)

where f(x) is a polynomial from the universe, U , of possible polynomials, D
is the data-set of points, E is the MSE, P is a polynomial complexity penalty
function, and λ is a penalty coefficient. An example penalty function is

P (f(x)) =
nt�

i=0

a2
i (6)

referred to as ridge regression, or weight decay in neural network terminology [8].
Polynomial regression is a commonly performed task in model induction and

machine learning in general and, as a result, various approaches have been tested.
Notably, neural networks (NN) have been used for polynomial regression [15] and
have been shown to be universal approximators capable of learning any non-
linear mapping [5]. However, the output of a NN is not the target polynomial
itself, but an uninterpretable list of tuned weights.

2.2 Particle Swarm Optimization

Particle swarm optimization is a well-established swarm-based optimization
method [6]. Since its inception, many modifications have been proposed to
improve its performance and its application on different problem types. Mod-
ifications for discrete environments include the BPSO or the angle modulated
PSO [12].

Polynomial Approximation Using Set-Based Particle Swarm Optimization 213

Basic Particle Swarm Optimization. The first PSO, proposed by Kennedy
and Eberhart [6], is a swarm-based optimization algorithm that makes use of
stochastic optimization techniques inspired by the flocking behaviour of birds.
The population of a PSO is called a swarm, and each agent in the swarm is known
as a particle. Each particle represents a candidate solution to the optimization
problem. These potential solutions are changed to explore the search landscape
and attempt to exploit any potential optima that have been found in the process.

In the PSO algorithm, let ns denote the swarm size, and nx denote the dimen-
sionality of the problem. Each particle i has a position xi(t), a velocity vi(t), a
personal best position yi(t), and a neighbourhood best position ŷi(t), with each
variable being nx-dimensional vectors. The personal best position is the best
optimum discovered by particle i up to iteration t, and the neighbourhood best
is the best optimum discovered by any particle in particle i’s neighbourhood.
Particle positions are updated in each iteration using:

xij(t + 1) = xij(t) + vij(t + 1) (7)

where vij(t) is the velocity, calculated for each dimension j using [13]:

vij(t + 1) = ωvij(t) + c1r1j(t)[yij(t) − xij(t)] + c2r2j(t)[ŷij(t) − xij(t)] (8)

where ω is the inertia weight, c1 and c2 are the acceleration coefficients and
r1j(t) ∼ U(0, 1) and r2j(t) ∼ U(0, 1) are uniformly distributed random variables
for all i ∈ {1, . . . , ns} and j ∈ {1, . . . , nx}.

The control parameters ω, c1 and c2 control the exploration-exploitation
trade-off in PSOs. This trade-off is adjusted to determine whether the goal of the
swarm is to discover new potential solutions or to refine already found optima.

Binary Particle Swarm Optimization. While PSOs were initially developed
for continuous search spaces, the binary PSO (BPSO) variant was developed by
Kennedy and Eberhart to solve binary problem spaces [7].

The BPSO has a structure similar to the standard PSO, with its velocities
still being defined by Eq. (8) in continuous space. However, the velocities are not
interpreted as a spatial change in Rnx space, but as probabilities of bit flips. The
position vector is changed to consist of bits, i.e. each xi ∈ Bnx , and the position
update equation is defined as:

xij(t + 1) =

�
1 if r3j(t) < S(vij(t + 1))
0 otherwise

(9)

where S(vij(t)) = 1

1+e−vij(t) and r3j(t) ∼ U(0, 1).

Set-Based Particle Swarm Optimization. The set-based PSO, as imple-
mented in this paper, was developed to solve the multi-dimensional knapsack
problem [9]. This is a discretised version of the standard PSO which makes use

214 J. van Zyl and A. P. Engelbrecht

of a set-based search space instead of a nx-dimensional continuous search space.
Particle positions consist of elements from the universal set, U , while the velocity
is a set of operation pairs which add to or remove from elements in the position.
The set-based representation allows for candidate solutions of various dimensions
(a variable number of components), contrary to the basic PSO where all candi-
date solutions have to be of the same dimension. This optimization algorithm
has been successfully applied to real-world problems like portfolio optimization
and feature selection [2,3], and performs well in discrete search spaces.

Because there is no concept of spatial structure for a set-based representa-
tion, analogies of the velocity and position update equations were developed by
Langeveld and Engelbrecht [9]. These new equations contain operators to cal-
culate the attraction to the global best position and to each particle’s personal
best position as seen in the standard PSO. There is also an operator to add
unexplored terms to the position and an operator to remove possibly poorly
selected terms. For more detail on the SBPSO and its position and velocity
update equations, the reader is referred to [9].

A brief description of the important control parameters follows: Coefficient
c1 controls the particle’s attraction to its own previous personal best position,
while c2 controls its attraction to the neighbourhood (global) best position up to
iteration t. The additional acceleration coefficients, c3 and c4, manage the effect
of the operators designed to improve exploration of the search space. The number
of terms added to a position is controlled by c3, and the number of terms from
a position is controlled by c4.

2.3 Adaptive Coordinate Descent

Adaptive coordinate descent (ACD) [10] is an improvement to the covariance
matrix adaptation evolutionary strategy (CMA-ES). ACD adds adaptive encod-
ing (AE), developed by Hansen [4], to the coordinate descent (CD) optimization
algorithm. AE is applied to an optimization algorithm in a continuous domain
to make the search independent from the coordinate system. This allows for
performance improvements in non-separable problems and in problems where
traditional CD fails. ACD utilises AE to perform its optimization process. For
more detail on ACD, the reader is referred to [10].

3 Set-Based Particle Swarm Optimization Polynomial
Regression

A BPSO can be used to learn polynomial structure by letting the position vector
represent all possible terms in the universal set. A position entry where xij = 1
means that particle i has selected term j to form part of the polynomial structure.
However, if the universal set contains nt terms, the BPSO particles’ positions
and velocities are fixed at size nx = nt, which is expected to scale poorly [11].

The proposed solution to this dimensionality problem is to use a SBPSO,
outlined in Algorithm 1, with its variable position size to represent the selected

Polynomial Approximation Using Set-Based Particle Swarm Optimization 215

terms from the universal set. This allows only the necessary terms to be added
to the position set, meaning that particle position sizes are not fixed to be of
size nt, allowing particle dimensions to be kept to a minimum. Positions are
initialised from the universal set by selecting a small collection of terms, and
velocities are initialised to the empty set. SBPSO velocities are interpreted as
the terms which need to be added or removed in order to change the current
set to a given target set which is calculated from the personal best, global best,
or a randomly chosen set. Therefore, the attractions to the personal and global
bests create pressure for position sets to add terms from the personal and global
bests, and to remove possibly unnecessary terms. The SBPSO velocities also
create pressure to explore the search space by adding terms not currently in the
particle position, personal best or global best; while also removing terms from
the position that are potentially unnecessary.

The size of the universal set increases exponentially as the number of input
dimensions are increased, and linearly as the maximum power of the target
polynomial is increased:

|U | = 1 +
no�

p=1

nx�

i=1

�
nx

i

�
(10)

where no is the maximum order, nx is the number of input variables and the
constant of one accounts for the bias term of a0.

Algorithm 1. Set-Based Particle Swarm Optimization
Generate the universal set
Create a swarm containing ns particles
Initialise particle positions as random subsets of U
Initialise local and global best values
while Stopping conditions not true do

for each particle i = 1, . . . , ns do
Use an optimization algorithm to find the coefficient values of the selected terms,
and evaluate the quality of this solution.
if f(Xi) < f(Yi) then

Update local best: Yi = Xi

end if
if f(Yi) < f(Ŷi) then

Update global best: Ŷi = Yi

end if
end for
for each particle i = 1, . . . , ns do

Update particle i’s velocity and position.
end for

end while

SBPSO and BPSO algorithms both find only the optimal term structure,
and not the coefficients; hence the following approaches are proposed.

216 J. van Zyl and A. P. Engelbrecht

A PSO can be used to find the coefficients of a polynomial by setting the
position vector to refer to all the possible terms from the universal set. The value
of each xij refers to the coefficient of the jth term, with coefficients close to 0
indicating that the corresponding term does not contribute to the polynomial
structure. However, this approach has many drawbacks. The position vectors are
fixed to size nx = nt and, as with the BPSO, will suffer from poor performance
in high dimensions [11]. Additionally, the threshold of when a coefficient is “close
to 0“ has to be defined and tuned as an additional control parameter.

In a preliminary feasibility study, this paper proposes a hybrid algorithm
which uses SBPSO to find the polynomial structure and a separate optimization
algorithm to find the optimal coefficients, with preliminary investigations con-
ducted using ACD. This hybrid algorithm will have the advantage of minimizing
the dimensionality of the problem using the SBPSO and the ability to find the
coefficients of the polynomial using ACD.

The basic overview is as follows: the main concepts of the standalone SBPSO
algorithm are still present in the hybrid algorithm; this includes the position and
velocity update equations, as well as the additional set operators used to increase
exploration. The interleaved optimization process using ACD is achieved in the
fitness function of the SBPSO. By using the terms currently being evaluated as
the input dimensions for ACD, coefficients can be found for each of the target
terms. The whole optimization process, as outlined in [10], is completed for each
fitness function evaluation of a SBPSO position.

4 Empirical Process

This section outlines the processes followed to evaluate the proposed polynomial
regression algorithms and to compare it to existing regression algorithms.

4.1 Benchmark Problems

The main aim of this paper is to illustrate the feasibility of the SBPSO for
inducing optimal polynomial structures and its secondary aim is to illustrate
the need for a second optimization algorithm to find both the term structure
and coefficients.

In order to test the ability of the SBPSO to find optimal polynomial struc-
tures and to compare these results to that of a BPSO, seven benchmark problems
with varying characteristics were created. These test functions, f1 to f7, have
coefficients of 1 to allow the SBPSO and BPSO algorithms to be tested in iso-
lation and to accurately measure their term-choosing abilities. The polynomials
for these problems have a known order, allowing this information to be used
to calculate the universal set. A further three test functions, f8 to f10, were
created with non-unit coefficients to test and compare the regression abilities of
the proposed combined SBPSO and ACD algorithm, as well as a standard PSO
algorithm. Table 1 outlines the test functions generated and their universal set
characteristics.

Polynomial Approximation Using Set-Based Particle Swarm Optimization 217

Table 1. Proposed test functions and their generated universal set characteristics

Function Max
degree

Universe
size

f1(x) = x3
1 + x2

2 + x2 + 1 5 16

f2(x) = x3 + x2 + x 5 6

f3(x) = x7 + x5 + x4 + 1 9 10

f4(x) = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 10 11

f5(x) = x2
1 + x2

2 + x2
1x2

3 + x3 4 29

f6(x) = x6
1 + x5

2 + x4
3 + x1 + x2

2x2
3 + x3 + 1 8 57

f7(x) = x1 + x2
2 + x2

3 + x2
4 + x2

5 + x1x2x4x5 + x3x4 + 1 4 125

f8(x) = 0.5x3 + 2x2 − x 5 6

f9(x) = x2
1 − 2x2

2 + 3x2
1x2

3 − 1.5x3 4 29

f10(x) = −3x1 − 3x2
2 − 3x2

3 − 3x2
4 − 3x2

5 + 2x1x2x4x5 + 5x3x4 − 6.2 4 125

4.2 Tuning Algorithm Configurations

Each of the control parameters of the algorithms used were tuned using quasi-
randomly generated Sobol sequences [14]. These sequences are generated to pro-
vide good coverage of the hypercube generated by the control parameter search
space.

The control parameters of each algorithm were tuned per problem. This was
done by sampling values for the control parameters as specified in Table 2.
For each algorithm, on each test problem, 128 Sobol sequences were generated
by sampling from the specified ranges and tuned for 500 iterations, with 30
particles in the swarm. The PSO control parameters were sampled to also satisfy
the stability conditions as outlined in [1]. The obtained optimal parameters are
outlined in Table 3 and Table 4, rounded to four (4) decimal places for brevity.
The best parameter combination was selected as the one that had the best
generalizable approximation ability, as represented by the lowest MSE over the
test set.

Table 2. Table of the parameters tuned for each implemented algorithm

SBPSO BPSO ACD PSO

Parameter range Parameter range Parameter range Parameter range

c1 [0, 1] ω [0, 1] ksucc {2} ω [0, 1]

c2 [0, 1] c1 [0, 2] kunsucc {0.5} c1 [0, 2]

c3 [0.5, 5] c2 [0, 2] λ [0, 1] c2 [0, 2]

c4 [0.5, 5] vmax [0, 6] λ [0, 1]

218 J. van Zyl and A. P. Engelbrecht

Table 3. Optimal control parameters for SBPSO, BPSO on f1 to f7

Function SBPSO c1, c2, c3, c4 BPSO ω, c1, c2, vmax

f1 0.0683, 0.5605, 0.9130, 0.9306 0.5249, 1.0498, 0.2548, 5.4755

f2 0.9648, 0.5351, 3.5410, 3.5410 0.2758, 1.0478, 1.4716, 3.3603

f3 0.7226, 0.6523, 4.8417, 3.2246 0.5063, 0.7431, 0.5107, 3.4306

f4 0.5166, 0.5498, 3.8793, 4.1782 0.3706, 0.4912, 1.6259, 0.6123

f5 0.8105, 0.8183, 2.7060, 4.9736 0.9243, 1.0322, 0.3935, 4.2509

f6 0.8916, 0.9248, 2.1918, 4.7407 0.9858, 0.4091, 1.7392, 4.5849

f7 0.8564, 0.6787, 2.2797, 1.1372 0.9936, 1.2373, 0.6923, 3.7880

Table 4. Optimal control parameters for Hybrid, PSO on f8 to f10

Function Hybrid c1, c2, c3, c4, λ PSO ω, c1, c2, λ

f8 0.5830, 0.5146, 1.6118, 0.8208, 0.2998 0.7631, 0.9169, 1.7158, 0.0883

f9 0.2041, 0.3623, 0.7856, 4.4594, 0.8818 0.7109, 1.4218, 1.2656, 0.9921

f10 0.3720, 0.8818, 0.8032, 0.6450, 0.0576 0.6909, 0.3818, 1.8291, 0.2973

4.3 Performance Measures

For each problem, 10000 nx-dimensional data points were created by calculating
the Cartesian product of nx generated real-valued axes to form the complete
data-set. These sets were split into training and test sets with the training set
being 70% of the total and the test 30%. In order to quantify the performance
of the algorithm, the MSE over the train and test set is reported on, as well as
the average size of the found polynomial.

The final tests were run with the selected parameter combinations, with the
results summarised in Section 5. For SBPSO and BPSO 2000 iterations over 30
independent runs were used; for the hybrid and PSO algorithms, 500 iterations
over 30 independent runs were used due to the high computational complexity
of the hybrid algorithm. For the final tests, all algorithms had 30 particles in
their swarms.

5 Results

This section outlines the results obtained from applying the SBPSO to the prob-
lem of finding the optimal term structure, followed by the preliminary investi-
gation into the feasibility of a hybrid algorithm to find both the optimal term
structure and coefficients.

5.1 SBPSO and BPSO Results

Table 5 shows the performance of SBPSO and BPSO on test functions f1 to f7

by reporting on the train and test MSEs. Table 6 shows how many independent

Polynomial Approximation Using Set-Based Particle Swarm Optimization 219

runs induced the correct target polynomial structure; this was calculated by
comparing, term by term, the structure of the found polynomial with the known
structure of the target polynomial. For each problem, the found polynomial that
was most similar to the target polynomial is reported on, as well as how many of
the independent runs induced the correct polynomial. In all test problems, except
f4, all 30 independent runs induced the correct polynomial term structure.

Table 9 compares the average size of the found optimum over the 30 indepen-
dent runs with the target polynomial size for both the SBPSO and the BPSO.
Specifically, the number of terms in the SBPSO global best positions, and the
number of one’s in the BPSO global best positions were averaged over the 30
independent runs to calculate the induced polynomial size.

Table 5. MSE values achieved by SBPSO and BPSO on problems f1 to f7

Problem SBPSO BPSO

Train MSE Test MSE Train MSE Test MSE

f1 0.99 ± 0.01 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.03

f2 1.00 ± 0.01 0.99 ± 0.02 1.00 ± 0.01 1.0 ± 0.03

f3 0.99 ± 0.01 1.0 ± 0.02 0.99 ± 0.01 0.99 ± 0.02

f4 1.02 ± 0.19 1.03 ± 0.17 0.99 ± 0.01 1.00 ± 0.02

f5 1.00 ± 0.01 1.00 ± 0.02 1.00 ± 0.01 1.00 ± 0.02

f6 1.00 ± 0.01 0.99 ± 0.03 0.99 ± 0.01 1.00 ± 0.02

f7 0.99 ± 0.01 1.00 ± 0.02 9353.03 ± 41904.74 9263.03 ± 41475.77

Table 6. Polynomials induced by SBPSO for problems f1 to f7

Function Best induced polynomial # correct

f1 x3
1 + x2

2 + x2 + 1 30

f2 x3 + x2 + x 30

f3 x7 + x5 + x4 + 1 30

f4 x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 29

f5 x2
1 + x2

2 + x2
1x

2
3 + x3 30

f6 x6
1 + x5

2 + x4
3 + x1 + x2

2x
2
3 + x3 + 1 30

f7 x1 + x2
2 + x2

3 + x2
4 + x2

5 + x1x2x4x5 + x3x4 + 1 30

The results show that SBPSO performed very well when inducing the optimal
term. The SBPSO performs better than BPSO in higher dimensions, as seen
for f7 where BPSO failed and SBPSO succeeded. The results f4 indicate that
SBPSO tends to keep position sizes smaller, as it was unable to induce the correct
structure in one run.

220 J. van Zyl and A. P. Engelbrecht

5.2 Hybrid and PSO Results

Table 7 shows the performance of the hybrid SBPSO and PSO on test func-
tions f8 to f10 by reporting on the train and test MSEs. Table 8 shows how
many independent runs induced the correct target polynomial structure. For
each problem, the found polynomial that was most similar to the target polyno-
mial is reported on, as well as how many of the independent runs induced the
correct polynomial. The hybrid algorithm often did not induce the exact polyno-
mial term structure of the target polynomial, but was still able to minimize the
MSE by compensating for incorrectly chosen terms by varying the coefficients.

Table 10 compares the average size of the found optimum over the 30 inde-
pendent runs with the target polynomial size. Specifically, the number of terms
in the hybrid algorithm’s global best positions, and the number of dimensions
in the PSO’s global best positions were averaged over the 30 independent runs
to calculate the induced polynomial size. In the case of the PSO, the particles’
dimensionality is always the same as the size of the universal set, but it was
added for consistency.

Table 7. MSE values achieved by the hybrid algorithm and PSO on problems f8 to
f10

Problem Hybrid PSO

Train MSE Test MSE Train MSE Test MSE

f8 1.00 ± 0.01 1.00 ± 0.03 466018.07 ± 1045346.24 474531.68 ± 1073162.36

f9 3.22 ± 4.82 17.06 ± 56.73 3.56e21 ± 5.75e21 3.46e21 ± 5.58e21

f10 1.01 ± 0.04 1.08 ± 0.11 2.56e28 ± 7.25e28 2.47e28 ± 7.06e28

Table 8. Polynomials induced by the hybrid algorithm for problems f8 to f10

Function Best induced polynomial # correct

f8 0.50x3 + 1.99x2 − 0.99x + 0.02 27

f9 x2
1 − 2x2

2 + 3x2
1x

2
3 − 1.5x3 − 0.04 0

f10 −2.99x1 − 3.00x2
2 − 2.99x2

3 − 3.0x2
4 + 1.99x2

5 0

+1.99x1x2x4x5 + 0.0x1x2x3 + 4.99x3x4 + 0.00x1x4 − 4.78

The hybrid algorithm performed considerably better than the PSO when
searching for optimal coefficients. For each of the problems f8 to f10, the hybrid
algorithm was able to minimize the MSE to an acceptable range. However, the
hybrid algorithm did not find the optimal term structure, as ACD was able to
minimize the contribution of these incorrectly chosen terms with coefficients close
to zero. The PSO algorithm was unable to approximate the correct coefficient
values, as seen by the poor MSE results.

Polynomial Approximation Using Set-Based Particle Swarm Optimization 221

Table 9. SBPSO and BPSO induced
polynomial sizes

Problem Target size Average size

SBPSO BPSO

f1 4 4.0 4.0

f2 3 3.0 3.0

f3 4 4.0 4.0

f4 9 8.96 9.0

f5 4 4.0 4.0

f6 7 7.0 7.0

f7 8 8.0 8.5

Table 10. Hybrid and PSO induced
polynomial sizes

Problem Target size Average size

Hybrid PSO

f8 4 4.1 6.0

f9 4 8.03 29.0

f10 8 11.57 125.0

6 Conclusions and Future Work

The purpose of this paper was to propose a novel set-based approach to inducing
optimal polynomial structures using a well-established optimization algorithm,
and to lay the foundation for future improvements and additions to be made to
this approach.

The proposal of using a set-based optimization algorithm holds promise for
future work, as the SBPSO performed well when tasked with selecting optimal
term combinations and showed that it scales better than the existing BPSO
method. Because the SBPSO is grounded in set-theory, it holds even more
promise to be improved to perform better on the high dimensional problems
in which it failed.

The proposed hybrid algorithm consists of the SBPSO algorithm to find an
optimal combination of monomials in the polynomial, and the ACD algorithm to
find optimal coefficients of these monomials. The application of the SBPSO and
ACD shows promise as a well-suited set-based solution for polynomial regres-
sion problems. Preliminary results show good performance on low dimensional
and low order polynomials where the universal set size remains relatively small,
but with some performance drawbacks with larger search spaces. The proposed
algorithm also provides the advantage over existing algorithms that it has eas-
ily interpretable results and the most potential for improvement. However, this
paper’s results are not sufficient to draw conclusions about the SBPSO or hybrid
SBPSO algorithm’s performance on high dimensional problems. More complex
polynomials need to be tested to understand how the algorithms will behave in
high dimensional spaces.

Future work includes further testing the capabilities of the SBPSO algorithm
when applied to real-world data-sets and to investigate the possibility of using
computationally cheaper methods to find optimal the coefficients. The algorithm
can also be extended to work in dynamic environments by introducing quantum-
PSO inspired effects.

222 J. van Zyl and A. P. Engelbrecht

Acknowledgements. The authors acknowledge the Centre for High Performance
Computing (CHPC), South Africa, for providing computational resources for this
research paper.

References

1. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

2. Engelbrecht, A.P., Grobler, J., Langeveld, J.: Set based particle swarm optimiza-
tion for the feature selection problem. Eng. Appl. Artif. Intell. 85, 324–336 (2019)

3. Erwin, K., Engelbrecht, A.P.: Set-based particle swarm optimization for portfolio
optimization. In: Proceedings of the Twelfth International Conference on Swarm
Intelligence, pp. 333–339 (2020)

4. Hansen, N.: Adaptive encoding: how to render search coordinate system invariant.
In: Proceedings of the International Conference on Parallel Problem Solving from
Nature, pp. 205–214 (2008)

5. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

6. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

7. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algo-
rithm. In: Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics. Computational Cybernetics and Simulation, vol. 5, pp. 4104–
4108 (1997)

8. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Advances in Neural Information Processing Systems, vol. 4, pp. 950–957. Morgan-
Kaufmann (1992)

9. Langeveld, J., Engelbrecht, A.P.: Set-based particle swarm optimization applied to
the multidimensional knapsack problem. Swarm Intell. 6, 297–342 (2012)

10. Loshchilov, I., Schoenauer, M., Sebag, M.: Adaptive coordinate descent. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, pp. 885–892
(2011)

11. Oldewage, E.T.: The perils of particle swarm optimization in high dimensional
problem spaces. In: MSc thesis, University of Pretoria (2019)

12. Pampara, G., Franken, N., Engelbrecht, A.P.: Combining particle swarm optimisa-
tion with angle modulation to solve binary problems. In: Proceedings of the IEEE
Congress on Evolutionary Computation, vol. 1, pp. 89–96 (2005)

13. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998)

14. Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation
of integrals. USSR Comput. Math. Math. Phys. 7(4), 86–112 (1967)

15. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6),
568–576 (1991)

