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Abstract—This paper presents a new approach to induce a
list of rules from a dataset by using a set-based particle swarm
optimisation algorithm. Many contemporary rule induction al-
gorithms tend to use similar information gain based approaches
to fit a training dataset. The proposed novel algorithm is a
meta-heuristic approach which finds an optimal rule list while
providing the flexibility to overcome traditional drawbacks such
as overfitting and rigidity to the datatypes that can be used. This
paper shows that the proposed algorithm performs comparatively
well when compared to existing rule induction algorithms and it
has the potential to be expanded further by adding rule pruning
techniques.

Index Terms—rule induction, particle swarm optimisation, set-
based particle swarm optimisation

I. INTRODUCTION

Classification problems are a class of supervised learning
problems in which models are induced to have the ability to
separate unseen data points into a distinct class.

Various approaches to solving classification problems exists:
from statistic-based algorithms such as the naı̈ve Bayes clas-
sifier [1] to tree induction algorithms such CART [2] and the
information gain technique used in ID3 [3]. Nature-inspired
approaches to classification have also been explored. For
example, highly accurate models have been induced by neural
networks (NNs) [4]. The drawback of standard classification
solvers, is that it is often difficult to understand why a model
classified an instance into the class it did. The severity of
this drawback varies from approach to approach, with decision
trees offering limited interpretability from the tree structure,
while NNs are complete black boxes, meaning that additional
rule extraction needs to be performed to discern information
from the model other than the final classification [5].

As an expansion of general classification abilities, rule
induction (RI) algorithms were created and have since been
applied to a variety of problems [6]. Rule induction algorithms
give the end user an explanation of how a classification was
made by returning a set of rules outlining the conditions which
need to be satisfied in order for an instance to be classified
as a specific class. This paper proposes a new approach to
rule induction from a classification dataset, one which uses
a set-based particle swarm optimisation (SBPSO) algorithm

[7] in a separate-and-conquer approach to find an optimal
set of rules. In order to apply the SBPSO algorithm, rule
induction is first defined as a set-based discrete optimisation
problem. The SBPSO rule induction algorithm is evaluated
on a number of classification datasets, and its performance
is compared to popular rule induction algorithms. The use of
a SBPSO to induce rule provides advantages over classical
approaches, as this paper shows. A SBPSO can solve a wider
range of problem types by changing the universe generation
function, it is not limited to traditional greedy performance
metrics, and it holds promise for further expansion for use in
dynamic environments where concept drift is present, as well
as for multi-objective problems. The results show that this
set-based approach performs adequately on the tested datasets
and obtains results comparable to the current state of the art
algorithms. To the knowledge of the authors, this is the first
attempt to apply a set-based optimisation algorithm to rule
induction.

The remaining sections of this paper are organised as
follows: Section II contains a literature review on relevant
works used in the implementation of this new approach or
works necessary for the comparison and evaluation of its
performance. Section III outlines the proposed rule induction
approach and how it was implemented using a SBPSO, while
Section IV explains the steps taken to evaluate the performance
of this paper’s approach. Finally, Section V presents the results
on the benchmark problems and Section VI concludes this
paper.

II. BACKGROUND

This section provides a general overview of rule induction
concepts and some existing algorithms. The algorithms will
be used for performance comparisons in Section V.

A. Rule Induction

In the world of big data, it becomes more difficult to find
useful information among the immense amount of new data
created by modern systems each second. Therefore, knowledge
discovery from databases (KDD) has become an increasingly
important aspect of data mining and artificial intelligence sys-
tems. Rule induction algorithms give the end user the ability
to explain the structure of the decision making process and
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the relationship between the target and feature variables. The
ability to justify a decision is very valuable in certain industries
where there are strict regulations or severe consequences for
a responsible human agent. This includes the medical field,
where doctors cannot afford to make blind decisions, or credit
agencies, where service providers must justify the decisions
they make.

Generally, rules can be induced and formatted to a human-
readable IF-THEN format. The first part of the rule, following
the IF, is called the antecedent and is used to describe
instances. A rule covers an instance if all selectors in the
antecedent of the rule are true for the relevant attribute values
of the instance. The second part of the rule, following the
THEN, is the consequent. When an instance is covered by a
rule, that instance is assigned the value of the target class in
the consequent. If the rule does not cover the instance, the
instance is tested against the antecedent of the next rule in the
rule list. Although there are more complex representations of
the consequent, for the purpose of this paper the consequent
is a value of the target class.

A popular mechanism used in rule induction algorithms is
the set-covering also referred to as a separate-and-conquer,
approach [8]. The basic premise of set-covering is to find a
rule which, according to a predefined metric, best describes
the current dataset. Then, the instances in the dataset which
have been covered by the induced rule are removed, and the
process is repeated to induce the next rule in the set. A basic
set-covering approach is presented in Algorithm 1.

Algorithm 1 Basic set-covering approach
Define input dataset as E
Initialise rule set R = ∅
while E contains instances do

Induce new rule r
Remove all instances from E covered by r
Add r to R

end while
Return R

B. PRISM

PRISM is a rule induction algorithm proposed by
Cendrowska [9] which aims to induce less complex rules from
a dataset compared to the rules extracted by classification tree
algorithms. In contrast to tree-based algorithms which require
a common attribute between rules to form a root node, PRISM
can split the dataset on any of the input variables. According
to Cendrowska, this allows for less complex rule sets where
rules have no common attributes when compared to tree-based
algorithm which would have to make multiple dataset splits
to achieve the same information gain [9].

By maximizing the information gained by each new rule,
the entropy for the resulting dataset is minimised and PRISM
can induce a rule set which partitions the training dataset into
homogenous groups. This strategy achieves 100% classifica-
tion accuracy on the training dataset, which poses a problem

for the generalisation capabilities of PRISM as the rules tend
to overfit.

C. C4.5

The C4.5 algorithm was developed by Quinlan as an im-
provement over the ID3 algorithm [10]. C4.5 is used to induce
classification trees by creating the optimal tree branch splits to
specialise rules. These optimal splits are chosen by maximising
the normalised information gain metric when choosing new
selectors to add to the antecedent. The information gain
maximisation process is followed recursively until a base case
is encountered, after which a new decision boundary is created.
The resultant tree can be used as a basis from which to extract
rules, or can be used as a standalone classification system [11],
[12].

D. RIPPER

Traditional approaches to rule pruning would induce a
full rule set and retrospectively use a pruning dataset to
prune rules. Fürnkranz and Widmer improved rule pruning by
proposing incremental reduced error pruning (IREP) which
interleaves the pruning process with the inducing process
in order to improve performance [13]. Repeated incremental
pruning to produce error reduction (RIPPER) is a RI algorithm
proposed by Cohen [14] which was developed as a further im-
provement over IREP. Cohen aimed to combine the efficiency
of IREP and the classification power of C4.5 to develop an
approach which would perform well on large, noisy datasets.
RIPPER achieves this by essentially applying IREP multiple
times to refine the set of induced rules by increasing their
accuracy.

E. PART

PART, referring to the “partial decision trees” used in its
rule induction process, was developed by Frank and Witten
to induce rules from a dataset without the need for a global
optimisation process [15]. In order to induce a rule, PART
creates a small decision tree from the training dataset by
expanding tree subnodes until a stable subtree has been found
that cannot be simplified further. The leaf node of the tree
that satisfies the highest number of instances is then used to
extract a rule, and the covered instances are removed before
repeating the process. Frank and Witten believe this approach
avoids “hasty generalisation” that results in over-pruning the
newly induced rules.

F. Set-Based Particle Swarm Optimisation

Particle swarm optimisation (PSO) is an optimisation al-
gorithm developed by Eberhardt and Kennedy to solve real-
valued optimisation problems in a d-dimensional problem
space [16]. The PSO algorithm works by mimicking the flight
behaviour patterns of birds, with each particle moving through
the search landscape in search of an optimal solution. The
positions of the particles are updated based on their velocity;
the velocity is influenced by its previous velocity, an attraction
factor to the previously found best position of the particle, and
the best position found by any particle in the neighbourhood.



Langeveld and Engelbrecht developed an extension of the
PSO algorithm, the set-based particle swarm optimisation
(SBPSO) algorithm, to function in discrete environments
where the search landscape is generated by a universal set
and where solutions are represented as sets [7]. This SBPSO
algorithm was developed to solve the multi-dimensional knap-
sack problem and has since been applied to solve various
problems including feature selection, portfolio optimisation
and polynomial induction [17]–[19]. The SBPSO algorithm
uses analogies of the equations from the original PSO to add
or remove elements from the position sets of the particles in its
swarm. The velocity update equation of the SBPSO includes
factors like the attraction to the previously found best position
by a particle, the attraction to the best position found by
any neighbourhood of particles, an element removal operator,
and an element addition operator (the way these factors are
combined is shown in Equation 8). Algorithm 2 outlines the
pseudocode of the SBPSO algorithm.

Algorithm 2 Set-Based Particle Swarm Optimization
Generate the universal set
Create a swarm containing ns particles
Initialize particle positions as random subsets of U
Initialize local and global best values
while Stopping conditions not true do

for each particle i = 1, . . . , ns do
Evaluate the fitness of the position of particle i.
if f(Xi) < f(Yi) then

Update local best: Yi = Xi

end if
if f(Yi) < f(Ŷi) then

Update global best: Ŷi = Yi
end if

end for
for each particle i = 1, . . . , ns do

Update particle i’s velocity using equation 8
Update particle i’s position using equation 9

end for
end while

In order to define the necessary SBPSO operators, let P(U)
denote the power set of the universal set (meaning the set of
all possible subsets) and A×B denote the Cartesian product
of two sets A and B.

The addition of two velocities, V1 ⊕ V2, is a mapping,
⊕ : P({+,−} × U)2 → P({+,−} × U), that takes two
velocities and yields one velocity. Implemented as set opera-
tions, a velocity added to a velocity is interpreted as the union
operator:

V1 ⊕ V2 = V1 ∪ V2 (1)

The difference between two positions, X1 	 X2, is a
mapping, 	 : P(U)2 → P({+,−} × U), that takes two
positions and yields a velocity. The result is effectively the
set operation steps which are required to convert X2 into X1:

X1 	X2 = ({+} × (X1\X2)) ∪ ({−} × (X2\X1)) (2)

The scalar multiplication of a velocity, η⊗V , is a mapping,
⊗ : [0, 1] × P({+,−} × U) → P({+,−} × U), which takes
a scalar and a velocity, and yields a velocity. The mapping
results in a randomly selected subset of size bη × |V |c from
V . Note that 0⊗ V = ∅ and 1⊗ V = V .

η ⊗ V = random subset(V, η) (3)

The addition of a velocity and a position, X � V , is a
mapping, � : P(U)× P({+,−} × U)→ P(U), that takes a
position and velocity and yields the resultant position.

X � V = V (X) (4)

which involves applying the operation associated with each vi
from V = {v1, . . . , vn} to X by adding or removing each ei
as dictated by the elements in the velocity.

The removal of elements, β �− S from a position X(t),
where S is shorthand for X(t)∩Y (t)∩ Ŷ (t), is the mapping,
�− : [0, |S|] × P(U) → P({+,−} × U), that takes a scalar
and a set of elements, and yields a velocity. The operator is
implemented by randomly selecting a subset of elements from
S, with a size determined by β, to be removed from X(t):

β �− S = {−} ×
(
Nβ,S
|S|

⊗ S
)

(5)

The number of elements selected, Nβ,S is defined as:

Nβ,S = min
{
|S|, bβc+ 1{r<β−bβc}

}
(6)

for a random number r ∼ U(0, 1); 1{bool} is 1 if bool is true
and 0 if bool is false.

The addition of elements, β�+A to a position X(t) where
A is shorthand for U\(X(t) ∪ Y (t) ∪ Ŷ (t)), is a mapping
�+ : [0, |A|] × P(U) → P({+,−} × U) that takes a scalar
and a set of elements and yields a velocity. The operator is
implemented by randomly selecting a subset of elements from
A, with a size determined by β, to be added to X(t):

β �+ A = {+} × k-Tournament Selection(A,Nβ,A) (7)

where Nβ,A is the number of elements to be added to X(t)
as defined in equation (6) and k is a user-defined parameter.

The velocity update equation is defined as:

Vi(t+ 1) = c1r1 ⊗ (Yi(t)	Xi(t))⊕ c2r2
⊗
(
Ŷi(t)	Xi(t)

)
⊕
(
c3r3 �+ Ai(t)

)
⊕
(
c4r4 �− Si(t)

) (8)

where Ai(t) and Si(t) are calculated independently for each
particle; c1, c2 ∈ [0, 1] and c3, c4 ∈ [0, |U |]; each rk is
independently drawn from the distribution U(0, 1).

Finally, after the velocity set has been calculated using the
operators and equations defined above, the position update
equation is defined using the velocity set as:

Xi(t+ 1) = Xi(t)� Vi(t+ 1) (9)

The equations in this section were developed by the original
authors of the SBPSO and are implemented in this paper to
induce rules, however, the removal operator �− was modified
to implement tournament selection in the same fashion as the
�+ operator.



III. INDUCING RULES WITH A SET-BASED PARTICLE
SWARM OPTIMISER

The following section outlines how the new RI algorithm
works as well as the motivation for this new approach.

A. Using a Set-Based Particle Swarm Optimiser as a
Separate-and-Conquer Algorithm

In order to use a SBPSO as part of a set-covering algorithm,
a protocol needs to be defined for how instances are going to
be targeted and when they are going to be removed. To achieve
this, each independent instance of a SBPSO simulation is used
to induce one rule. The target class for which the SBPSO
induces rule is selected as the majority class of the remaining
instances in the dataset. This is contrary to existing algorithms,
which tend to start with the minority class, because using a
meta-heuristic does not strive for complete homogeneity in the
instances it covers. The SBPSO is able to compromise while
balancing the contributing factors in the objective function,
and this compromise can lead to poor performance when
inducing rules for the minority class. The SBPSO then runs
for a predetermined number of iterations and the resulting
global best position is adopted as the new rule. This rule is
then added to the rule list and is used to remove the covered
instances in the dataset. The process repeats to induce for the
current majority class until no more instances are available for
the majority class. The next majority class is then determined
and rules are induced for that majority class. This process
terminates once all instances in the dataset have been covered
by a rule.

B. Motivation for a meta-heuristic approach

Rule induction using a SBPSO (RiSBPSO) can be achieved
on a dataset by using the particles in its swarm to search
the fitness landscape for possible combinations of selectors
to make up an optimal rule antecedent. This approach is
contrary to popular gain-based approaches where rules are
built iteratively by building an antecedent either through a
top-down or bottom-up approach. Instead, the exploration-
exploitation trade-off mechanisms intrinsic to the velocity
update equation of the SBPSO are used to search and refine
for complete rules out of all possible selector combinations as
candidate antecedents. In order to induce rules for a dataset
using a SBPSO the following algorithm features need to be
designed: (1) an appropriate selector representation, (2) a
universe generator, and (3) an objective function.

Most of the classical rule induction algorithms discussed
in Section II tend to be greedy algorithms which overfit the
training dataset. This section outlines how the SBPSO meta-
heuristic can be applied to solve the same rule induction
problems while avoiding overfitting and theoretically reducing
the need to prune the rule set. Using a SBPSO mitigates the
performance issues associated with the curse of dimensionality
by allowing variable particle position and velocity sizes, in
other words the positions sets of the particles do not have to
contain all feature variables. When compared to classical RI
approaches, RiSBPSO also allows more explorative freedom

on the selectors in the antecedents of its rules. This leaves
room for modified comparison operators to be used meaning
that the RiSBPSO algorithm can be adapted to be used on
different attribute types or be extended from propositional
comparisons to first-order logic. Algorithm 3 provides the
steps of the RiSBPSO.

Algorithm 3 RiSBPSO
Let E be the input dataset
Let R be the initial empty rule set
for Select the majority class as the target class, Ci do

Induce a SBPSO swarm with a target variable Ci
Let the resulting global best position be r
Add r to R
Remove the instances covered by the r from the E

end for

C. Universe and Selector Representation

The universal set functions as the landscape representation
for the problem being solved by a SBPSO. While the num-
ber of independent variables (i.e. descriptive features) in the
dataset may be nx, the dimensionality of the problem being
solved in a SBPSO depends on the cardinality of the universal
set, |U |. However, dimensions of the particles are not fixed at
|U |, but are in the range [1, |U |]. This variable length position
size aids in breaking the curse of dimensionality, because
position sizes can remain relatively small even when the size
of the universal set increases.

Each element in the universe is a tuple which consists of an
attribute, an operator and a value. The attributes are the inde-
pendent input variables of the dataset, and each attribute has
its own set of possible compatible values. Compatible values
are either other feature variables (when dealing with first-order
logic) or constants that occur in the relevant attribute column.
Further, the chosen operators dictate which comparisons can
be made between the attributes and their possible values. In
this proposed algorithm, the equality operator and its negation
are used (i.e.=, 6=).

In RiSBPSO, the antecedents contain one or more selectors
which are used to specialise a rule and to determine which
data instances are covered by the rule. The selectors are in
the form (ai, 〈operator〉, vj), where ai is one of the input
features and vj is a compatible constant from the list of
possible values of the attribute ai. These selectors are then
combined conjunctively to specialise the rule. An antecedent,
A, of length l, is formed as a conjunction of the selectors s,
i.e. A = s0 ∧ s1 ∧ · · · ∧ sl−1.

Given the hypothetical dataset D with characteristics as set
out in Table I, the generated universe U is shown in Equation
(10):



TABLE I
SUMMARY OF LEGITIMATE ATTRIBUTE VALUES IN A HYPOTHETICAL

DATASET

Attribute Possible Values
a1 {v1,1, v1,2}
a2 {v2,1, v2,2, v2,3}
a3 {v3,1, v3,2}

U =

{(a1,=, v1,1), (a1, 6=, v1,1), (a1,=, v1,2), (a1, 6=, v1,2),
(a2,=, v2,1), (a2, 6=, v2,1), (a2,=, v2,2), (a2, 6=, v2,2),
(a2,=, v2,3), (a2, 6=, v2,3), (a3,=, v3,1), (a3, 6=, v3,1),
(a3,=, v3,2), (a3, 6=, v3,2)}

(10)

Generally, the size of the universal set is calculated as

|U | = |O| ·
j∑

a=1

|Va| (11)

where O is the set containing the operators, Va is the set
of legitimate values for attribute aa, and j is the number of
attributes in the dataset.

D. Particle Representation and Objective Function

Each particle in the swarm is defined by four sets: a position
set, a personal best position set, a neighbourhood best position
set, and a velocity set. The three position sets are all subsets of
the powerset of the universe (P(U)), while the velocity set is
a subset of P×{+,−} (the Cartesian product of the powerset
of U with {+,−}). When applying an induced antecedent
(represented as a set of selectors) to a dataset, each selector
is conjunctively used to specialise the subset of data which is
deemed covered by the rule.

The key to applying a meta-heuristic like the SBPSO
to different problems successfully lies in the definition of
the objective function. The objective function quantifies the
aptness of a candidate solution during the search for a global
optimum.

Rule induction is essentially a multi-objective optimisation
problem which requires that the contributions from each of
the sub-objectives in the fitness function be combined in
an appropriate way. This is achieved by applying weight-
aggregation in the objective function by using the coefficients
of each sub-objective in the fitness function to control the
trade-off between the often conflicting goals.

For RI, the sub-objectives are to
1) maximise the coverage of the rule,
2) maximise the accuracy of the rule,
3) maximise the purity of the rule,
4) minimise the complexity of the rule, and
5) minimise the entropy of the labels of the covered in-

stances.
For a dataset D = {X,y} with I instances of x1, . . . ,xI

with corresponding labels y1, . . . , yI and a rule R consisting

of an antecedent A and consequent C, the following is defined:
an instance xp = (x1, . . . , xd) is considered covered by a rule
antecedent if each selector sk ∈ A evaluates as true. Further,
xi is considered positively covered if it is covered and yi = C;
otherwise, if it is covered and yi 6= C, then the instance is
negatively covered. Table II defines the necessary quantities
used to calculate the fitness of a particle.

TABLE II
TABLE OF QUANTITIES USED IN METRIC CALCULATIONS

Symbol Description
r The induced rule being evaluated
P The number of instances in the data set which are of the

target class
p The number of positively covered instances by r. Note that

0 ≤ p ≤ P
N The number of instances in the data set which are not of

the target class
n The number of incorrectly covered instances by r. Note

that 0 ≤ n ≤ N
T The total number of instances which need to be covered.

Note that P +N = T
t The number of instances which are (correctly or incor-

rectly) covered by r. Note that p+ n = t
l The number of selectors in A
e The entropy of the labels in the set of covered instances

The objective function is defined as

f(D, r) = w1 (1−A(D, r)) + w2 (1− P(D, r))
+w3 (1− L(D, r)) + w4 (S(D, r)) + w5 (E(D, r))

(12)

where
• A(D, r) =

(
p+(N−n)
P+N

)
refers to the accuracy of the rule,

• P(D, r) =
(

p
p+n

)
refers to the purity of the rule,

• L(D, r) =
(

p+1
p+n+2

)
refers to the Laplace estimator,

• S(D, r) =
(

l
|U |

)
refers to the size of the rule, and

• E(D, r) = e refers to the entropy of the covered in-
stances.

Each wi ∈ [0, 1] and
∑5
i=1 wi = 1. This objective is treated

as a minimisation problem, but instead of merely taking the
dual of the two maximisation objectives, the problem was
formulated that each sub-objective will fall into the range
[0, 1]. This combined with the restrictions on the objectives’
weights ensures that the results are more interpretable as the
final value will always be [0, 1].

IV. EMPIRICAL PROCESS

This section outlines the processes followed to evaluate the
proposed RiSBPSO algorithm and to compare it to existing
rule induction algorithms.

A. Benchmark Problems

In order to evaluate the feasibility of this RI approach,
various open-access datasets popular in existing literature
were tested. These benchmark problems were obtained from
the UCI machine learning repository. Each problem set is a
classification problem, with only categorical features to allow



consistent comparison between the classification performance
of each RI algorithm and to simplify the universal set gener-
ation process.

Minimal preprocessing was done to the datasets. Attributes
with I unique values were removed, as well as attributes with
only one unique value because they are irrelevant. Instances
with missing values were discarded, unless in the cases where
a 10% these of missing values were of the same attribute then
the attribute was removed instead of the individual instances.
Table III describes the number of attributes and instances for
each benchmark dataset after preprocessing.

TABLE III
BENCHMARK DATASETS CHARACTERISTICS

Dataset Number of
input attributes

Number of
instances

Audiology 68 216
Balance Scales 4 625
Breast Cancer 9 277

Car 6 1728
Congressional Voting 16 435

Hayes-Roth 4 132
KR vs KP 36 3196

Lymphography 17 148
Monks-1 6 556
Monks-2 6 601
Monks-3 6 553

Mushroom 21 8124
Nursery 8 12959

Primary Tumour 15 335
SPECT 21 267

Tic-tac-toe 9 957
Zoo 16 101

B. Algorithm Tuning

The algorithms were tuned by sampling possible control
parameter combinations from a quasi-randomly generated set
of Sobol sequences in order to maximise performance [20].
These sequences are generated by a predetermined formula
to provide good coverage of the hypercube generated by the
control parameter ranges, while adding more stochasticity to
the values when compared with a grid search. The parameters
were tuned independently for each dataset, with each tuning
process sampling 128 Sobol sequences and using 30 swarm
particles running for 300 iterations. The optimal combination
of parameters for each dataset was found by tuning on a train-
ing set of the dataset, and using the generalisation performance
to select the best combination. This optimal combination of
parameters was then used to perform the final tests for the
given dataset.

For the comparison algorithms that have tunable parameters,
128 Sobol sequences were also generated to tune their control
parameters. Table IV contains the list of parameters and their
ranges tuned for each algorithm, and Table V contains the
values for the found optimal parameter values (for brevity,
values have been rounded to 3 decimal places).

C. Performance Measures

For each of the benchmark problems, the accuracy over the
test set is reported. The datasets were split randomly into a

TABLE IV
CONTROL PARAMETERS TUNED PER ALGORITHM

SBPSO C4.5
Parameter range Parameter range

c1 [0, 1] conf (0, 1)
c2 [0, 1] min {1 . . . 10}
c3 [0.5, 5]
c4 [0.5, 5]

RIPPER PART
Parameter range Parameter range

k {1 . . . 5} conf (0, 1)
min {1 . . . 10}

training set, consisting of 70% of the instances, and a test set
of the remaining 30%. For datasets which have a dedicated
test set (like the Monks problems), this independent set was
incorporated into the main dataset to ensure that the test sets
in each independent run were sampled randomly.

The final tests were performed with the optimally selected
control parameters, for 300 iterations with 30 particles. Each
of these tests was repeated for 30 independent tests to ensure
statistically relevant results.

V. RESULTS

The following section presents the results obtained after
apply each respective algorithm to the datasets discussed in
Subsection IV-A.

It is clear from Table VI that the RiSBPSO performs well
on the datasets and is able to achieve consistent results, as
shown by the small standard deviations. On most datasets, the
mean accuracies on the test set of the algorithms are within
one standard deviation of each other. There are certain excep-
tions, like the Monks-2 dataset, where RiSBPSO consistently
outperforms the other algorithms by about 20%. RiSBPSO was
outperformed by a 10% margin on the Audiology and SPECT
datasets by C4.5.

Table VII breaks down the results for each RI algorithm.
The average accuracy for RiSBPSO was 83.31 ± 2.80, for
PRISM it was 75.49± 2.82, RIPPER achieved 80.90± 3.33,
while PART’s average was 83.09 ± 2.92 and C4.5’s was
81.84 ± 3.33. RiSBPSO and C4.5 both had the best perfor-
mance for 6 datasets, compared to 4, 1 and 0 for PART,
RIPPER and PRISM respectively. However, the better average
test set accuracy and lower standard deviation indicates that
RiSBPSO has both a smaller bias and is more consistent in
its performance. This shows that RiSBPSO is not only able
to compete with the state of the art algorithms but can also
marginally out perform them.

VI. CONCLUSION

The purpose of this paper was to present a new approach
to rule induction and to compare the proposed approach with
traditional rule induction algorithms. The RiSBPSO algorithm
performs comparatively on par with the current state of the art
RI algorithms and on average outperformed all the comparison
algorithms. The prospects of the RiSBPSO are further im-
proved by the fact the compared algorithms implement pruning



TABLE V
OPTIMAL CONTROL PARAMETERS FOR IMPLEMENTED RI ALGORITHMS

Dataset SBPSO
c1, c2, c3, c4

C4.5
conf , min

Audiology 0.512, 0.881, 3.623, 1.465 0.385, 1
Balance

Scale 0.995, 0.897, 2.433, 4.919 0.897, 2

Breast
Cancer 0.038, 0.624, 4.483, 0.821 0.470, 6

Car 0.454, 0.793, 2.769, 1.209 0.946, 2
Congressional

Voting 0.990, 0.556, 4.271, 2.708 0.378, 2

Hayes-Roth 0.950, 0.123, 2.688, 3.989 0.772, 4
KR vs KP 0.896, 0.833, 2.392, 2.562 0.168, 1

Lymphography 0.075, 0.402, 2.132, 3.807 0.851, 9
Monks-1 0.223, 0.407, 1.566, 1.081 0.171, 1
Monks-2 0.390, 0.652, 3.053, 1.966 0.918, 1
Monks-3 0.894, 0.059, 1.905, 0.998 0.348, 7

Mushroom 0.651, 0.468, 3.024, 3.652 0.339, 4
Nursery 0.628, 0.596, 4.757, 4.012 0.630, 1
Primary
Tumour 0.673, 0.551, 4.691, 2.016 0.001, 3

SPECT 0.122, 0.367, 4.945, 4.796 0.352, 4
Tic-Tac-Toe 0.837, 0.638, 3.441, 3.097 0.816, 2

Zoo 0.100, 0.988, 4.369, 1.475 0.714, 1

Dataset RIPPER
k

PART
conf , min

Audiology 1 0.655, 1
Balance

Scale 5 0.916, 8

Breast
Cancer 3 0.789, 10

Car 4 0.622, 1
Congressional

Voting 1 0.490, 3

Hayes-Roth 3 0.723, 5
KR vs KP 4 0.825, 1

Lymphography 4 0.390, 1
Monks-1 2 0.695, 4
Monks-2 2 0.917, 5
Monks-3 1 0.312, 5

Mushroom 1 0.363, 6
Nursery 1 0.311, 2
Primary
Tumour 1 0.420, 6

SPECT 2 0.706, 9
Tic-Tac-Toe 2 0.925, 1

Zoo 2 0.956, 1

techniques, while RiSBPSO can still be extended to implement
pruning.

This paper showed that a set-based approach to RI is
possible, and that the SBPSO algorithm is suited to be used for
this purpose. The authors believe that through further study of
the factors influencing RiSBPSO’s performance, even better
results can be obtained. These factors include the elemental
mechanisms built into the SBPSO algorithm, as well as the
subcomponents in the objective function. These objective
function subcomponents can be modified and tested, and the
user-defined weight coefficients can be tuned in future studies.
Additionally, it can be studied how well RiSBPSO performs
when rule pruning is applied.

TABLE VI
RI PERFORMANCE METRICS FOR RISBPSO

Dataset Accuracy Number of
rules Rule size

Audiology 68.77± 5.52 43.63± 6.25 1.96± 0.19
Balance Scales 77.32± 2.68 47.9± 3.33 3.22± 0.12
Breast Cancer 65.76± 4.43 33.47± 2.9 6.06± 0.54

Car 96.07± 1.07 42.9± 2.93 2.99± 0.11
Congressional Voting 93.67± 2.1 9.87± 1.45 2.43± 0.43

Hayes-Roth 70.83± 5.26 17.7± 1.44 2.42± 0.25
KR vs KP 99.13± 0.35 22.8± 2.27 2.53± 0.23

Lymphography 38.07± 7.65 24.3± 1.59 4.54± 0.36
Monks-1 100.0± 0.0 6.9± 0.7 1.83± 0.24
Monks-2 97.46± 2.15 30.67± 2.07 2.8± 0.16
Monks-3 98.96± 0.64 4.47± 1.18 1.36± 0.18

Mushroom 100.0± 0.0 4.23± 0.5 3.62± 0.39
Nursery 99.17± 0.27 141.9± 10.1 4.34± 0.09

Primary Tumour 33.53± 4.13 99.0± 6.2 4.04± 0.15
SPECT 84.2± 5.14 21.03± 7.03 3.52± 0.78

Tic-tac-toe 98.44± 1.83 17.0± 3.11 2.75± 0.17
Zoo 95.05± 4.46 8.07± 0.77 1.2± 0.1
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