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 A B S T R A C T

Class imbalance is the phenomenon defined as skewed target variable distributions in a dataset. In other words 
class imbalance occurs when a dataset has an unequal proportion of target variables assigned to the instances 
in the dataset. Although the level of class imbalance is simply an inherent property of a dataset, highly skewed 
class imbalances cause misleading performance evaluations of a classification model to be reported by certain 
evaluation metrics. This paper reviews the history of existing performance evaluation metrics for classification, 
and uses a normalisation process to create new variations of these existing metrics which are more robust to 
class imbalance. Conclusions about the performance of the analysed metrics are drawn by performing the first 
extensive global sensitivity analysis of classification metrics. A statistical analysis technique, i.e. analysis of 
variance, is used to analyse the robustness to class imbalance of the existing metrics and the proposed metrics. 
This paper finds that most performance evaluation metrics for classification problems are highly sensitive to 
class imbalance, while the newly proposed alternative metrics tend to be more robust to class imbalance.
1. Introduction

One of the key aspects in the application of any classification model 
to a problem is the definition of a suitable evaluation function. The 
evaluation function of a classification model or rule set inducer creates 
the reference that the model uses to evaluate how well or how poorly 
it performs. The metrics used to define the evaluation function of a 
predictive model determines whether the end-user is able to make a 
correct assessment about the suitability of the model. In addition, it 
is incredibly important to provide an accurate representation of how 
well a model performs so that a satisfactory objective function can 
be defined for the implemented training algorithm. The metrics used 
to define the objective function of a training algorithm influences the 
quality of the model that the training process produces. Unfortunately, 
many commonly used classification metrics are sensitive to the level of 
CI and provide an inaccurate portrayal of a model when there is not 
a uniform distribution of the number of instances in each class [1]. 
The sensitivity of metrics to CI causes problems for both the eval-
uation of the performance of models, and for training models with 
meta-heuristics when these metrics are used in objective functions.

A considerable complication encountered when working with
skewed (imbalanced) datasets is that very often the most important or 
interesting class is the minority class [2]. One of the first modern ex-
amples of studies on the issue of deceptive classifier evaluation caused 
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by problematic CI was in the use of computer vision systems to analyse 
satellite imagery [3]. The system was trained to find oil spills on the 
ocean surface, but was sensitive to the user-requirement regarding 
the false positive and false negative trade-offs [3]. Machine learning 
(ML) applications in the medical field have proved useful for cancer 
diagnosis; however, a positive diagnosis is most often the exception in 
patients. This can be quite problematic considering the implications 
of an incorrect diagnosis of the (positive) minority class [4]. Since 
the advent of ‘‘big data’’, manual fraud investigations have become 
increasingly impractical which has required a more rapid switch to 
automated systems [5]. The increased use of automated systems has 
escalated human dependence on reliable classifier evaluation methods 
in even the most unbalanced datasets. Fraud detection systems have to 
investigate hundreds of thousands of transaction records, of which the 
vast majority are authentic. This creates an extremely skewed dataset 
which often results in poor performance using traditional classification 
methods [6]. Furthermore, the internet has increasingly become a 
breeding ground for malicious individuals to attack vulnerable systems 
on the web. This has created the need for intrusion detection systems 
which also represent a league of problems where the target class is in 
the extreme minority [7].
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2. Scope and contributions

To the knowledge of the authors, this is one of the most complete 
reviews of metrics for the evaluation of classification performance with 
respect to CI. Literature which analyses the behaviour of classification 
metrics under CI does exist and provides insight into the shortcomings 
of classification metrics [8,9]. However, current studies do not provide 
insight into how to improve classification metrics. The analysis per-
formed in this paper is both model-agnostic and dataset-free, which 
makes the results generally applicable to all areas of artificial intelli-
gence and fields of application. The three main contributions of this 
paper are as follows:

• This paper reviews the historical origins of binary classification 
metrics popular in literature today. There are publications, with 
contemporary use of performance metrics, which do not cite the 
proposers of the implemented metrics. This paper provides a 
comprehensive review of the history of these metrics, and gives 
the necessary credit to the original authors.

• This paper proposes a normalisation technique to make metrics 
more robust to CI. CI results in large differences in the ranges of 
the entries of the confusion matrix. Because of the range differ-
ences, a technique which ensures that components of metrics have 
equal contributions is proposed. The normalisation technique 
results in new metrics which are more robust to CI. There are two 
cases where the normalisation technique results in the rediscovery 
of existing metrics; for these cases, proper credit is given to the 
original authors.

• This paper performs the first global sensitivity analysis (SA) of 
existing and proposed metrics, which provides insight into how 
sensitive metrics are to CI. A method based on analysis of variance 
is used to perform the global SA.

The remainder of this paper is structured as follows: Section 3 
provides the required background information drawn from relevant 
literature, after which Section 4 describes the normalisation process 
used to create new metrics. Section 5 reviews binary classification 
performance evaluation metrics popular in this field followed by Sec-
tion 6 which proposes new variations of certain existing metrics. The 
empirical process used to evaluate the discussed metrics is outlined in 
Section 7, and the results of the evaluations are presented and discussed 
in Section 8.

3. Background

This section presents the concepts relevant to the rest of this pa-
per. These concepts include the foundations relevant to performance 
evaluation metrics for classification systems which are discussed in 
Section 3.1. This section starts with a background on the problem 
wrought by CI, followed by a subsection on the definitions of the parts 
which constitute classification metrics. Finally, the statistical technique 
(i.e. analysis of variance with Sobol’ sequences) used to analyse the 
popular performance metrics is described.

3.1. Imbalanced classification

Datasets can be described by a few salient features like the number 
of instances in the dataset, the number of input features, the data type 
of each feature, and the distribution of the target feature values of the 
dataset. This so-called distribution of the target feature values is a very 
important aspect to take into account when evaluating the performance 
of a classification algorithm on a dataset. To illustrate, imagine a case 
where there is a dataset 𝐷 that contains 99 instances of class 𝐴 for 
every 1 instance of class 𝐵. By using the popular baseline comparison 
approach of always predicting the majority class (class 𝐴), an accuracy 
of 99% is achieved.
2 
This ‘‘untrustworthiness’’ of performance evaluation metrics as seen 
in the example above is a well-known phenomenon, as demonstrated in 
the following studies from literature. Swets reviewed the shortcomings 
of accuracy on a range of real-world problem domains which include 
weather forecasting, information retrieval, aptitude testing, medical 
imaging, materials testing, and polygraph lie detection [10]. Brzezinski 
et al. used barycentric visualisation to analyse ten different properties 
of metrics, and showed the importance of considering the effect of the 
CI when selecting a metric to use [11]. Amadzadeh and Angryk created 
a contingency space to determine how metric behaviour changes with 
CI, the study showed that four popular metrics are highly sensitive to 
CI [12]. Brzezinski et al. used a binning technique to create histogram 
visualisations of the probability mass functions of different metrics un-
der CI and found that data-streams with variations in CI are particularly 
susceptible to result in misleading metric interpretations [13]. Luque 
et al. created and visualised a metric bias function to determine for 
which metrics CI introduces bias, and used clustering to quantify the 
similarities of the biases of different metrics [14].

Popular approaches in ML literature which deal with CIs typically 
involve either a form of artificial manipulation of the dataset, using ML 
algorithms which are more robust to imbalance datasets, or redefining 
the problem as an anomaly detection problem [2,15]. Artificial ma-
nipulation of the dataset materialises in the form of either reducing 
the number of instances in the majority class (undersampling), increas-
ing the number of instances in the minority class (oversampling), or 
both [16,17]. An example of reducing the majority class is to sample 
a random subset of the instances of the majority class to reduce its 
number of instances to be similar to that of the minority class. This 
random undersampling technique is a straightforward way to reduce 
CI, but can cause the majority class to become misrepresented, because 
important instances may be discarded. Alternatively, more advanced 
methods can be used to reduce the majority class; for example, using 
a cluster-based stratified undersampling technique [18]. Further, mi-
nority oversampling is an approach used when training data is scarce 
and the user cannot afford to reduce the size of the majority class. 
This can easily be achieved by duplicating instances of the minority 
class and adding them to the training set. More advanced methods have 
also been proposed which create new artificial instances of the minor-
ity class. These techniques (e.g. the synthetic minority over-sampling 
technique (SMOTE) [19]) create additional variety among the minority 
class training instances, but may also unintentionally introduce false 
concepts that a classifier might learn. Zhang et al. investigated the 
effect of combining data resampling and feature selection in different 
orders, and the effect this has on imbalanced learning [20].

Many of the modern day approaches to dealing with class imbalance 
involve some form of dataset manipulation. For example, Dube and 
Verster studied the effects of nine different levels of class imbalance 
(between 1∶9 and 1∶1) on ten different ML models using five different 
performance metrics [21]. Dube and Verster found various ML models 
to be sensitive to class imbalance, with varying results between dif-
ferent evaluation metrics. For example the stochastic gradient descent 
classifier (SGDC) had an 𝐹1 score of 0.0335 for 1∶9 imbalance and a 
score of 0.5223 for a 1∶1 imbalance; similarly SGDC had a Matthew’s 
correlation coefficient (MCC) score of 0.1024 for 1∶9 and 0.4548 for 
1∶1 imbalance.

De la Cruz Huayanay et al. compared the effectiveness of 12 differ-
ent metrics in determining the best ML model for binary classification 
problems [22]. In order to evaluate the effectiveness of different metrics 
in selecting the optimal ML model, De la Cruz Huayanay et al. simu-
lated imbalanced data using the Power-Cauchy distribution and applied 
the Kolmogorov-Simrnov test between the known Power-Cauchy curves 
and the metric curves. De la Cruz Huayanay et al. claimed that MCC, g-
mean, and Cohen’s kappa yielded metric curves closest to the expected 
Power-Cauchy curve.
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Another recent study of classification metrics by Siblini et al. [23] 
proposed the use of the likelihood ratio [24] as the optimal scoring 
function, i.e. 

𝑠𝑡(𝑥) ∶=
P𝑡(𝑥|𝑦 = 1)
P𝑡(𝑥|𝑦 = 0)

. (1)

With reference to the likelihood ratio, Siblini et al. proposed that a 
desirable performance metric satisfies the property that the likelihood 
of 𝑥, i.e. P𝑡(𝑥|𝑦), does not change as the prior, i.e. P𝑡(𝑦), varies. Siblini 
et al. proposed metrics which satisfy this property, referred to as 
‘‘calibrated metrics’’, by incorporating positive class ratio, 𝜋 =

∑𝑁
𝑖=1 𝑦𝑖
𝑁

(i.e. the percentage of instances in the target class) into the metric 
calculation. The calibrated metrics from Siblini et al. showed that the 
prior class distribution of the dataset plays an important role in the use 
of performance evaluation metrics.

Gu et al. outlined the shortcomings of a few popular performance 
metrics on imbalanced datasets [25]. Specifically, Gu et al. discussed 
the issues which afflict accuracy, precision, recall, and the ROC curve. 
Accuracy does not discriminate between the type of error made; mis-
classifications of the target class and non-target class are both penalised 
equally, which is not always ideal. When using precision and recall to 
evaluate a ML model, the result does not take the correctly classified 
non-target instances into account which can lead to misleading inter-
pretations of model performance. As a result, situations can arise where 
a classifier has vastly different behaviours on different datasets with 
varying numbers of non-target instances, even though the precision and 
recall remains the same. Gu et al. also critiqued the ROC curve for 
not taking precision into account, since it renders the metric blind to 
cases when there are a significant number of misclassified non-target 
instances.

3.2. Fundamentals of measures and metrics

What would be described as the qualities of a good metric varies 
depending on the application of the metric [26]. When a metric is 
used to evaluate the performance of a model after training has been 
completed, the metric should quantify the generalisation capabilities 
of the model. However, if a metric is to be used in the training process 
of a model, then using a metric suited to assess the generalisation 
performance of a completely trained model is short-sighted, because 
the metric may cause the training process to stagnate in a suboptimal 
local minimum. Instead, the metric should be able to capture the future 
classification potential of the model-in-training at a given time-step 
during the training process [26,27].

When constructing a metric to quantify how well a classification 
model performed, there are a few constituent measures which are 
important building blocks of all available classification performance 
metrics. In a given dataset of 𝑇  instances, there are 𝑃  instances from 
the target class (the feature value that the model tries to predict) and 𝑁
instances that are not in the target class (𝑁 = 𝑇 − 𝑃 ). Of the instances 
which a model has classified as belonging to the target class there 
are correctly classified and incorrectly classified instances. Instances 
correctly classified as belonging to the target class are referred to as 
true positives; the number of true positives is denoted as 𝑡𝑝. Instances 
incorrectly classified as the target class are called false positives; the 
number of false positives is denoted as 𝑓𝑝. Similarly, the number of 
instances correctly identified as not belonging to the target class (these 
instances are true negatives) are denoted by 𝑡𝑛, while the number 
of instances incorrectly associated as the non-target class (the false 
negatives) is denoted as 𝑓𝑛. The sum of the instances classified as 
belonging to the positive class (irrespective of correctness) is denoted 
by 𝑃 ′ and the sum of the instances classified as the non-target class is 
𝑁 ′.

These classification measures and the relationships between them 
are summarised in the confusion matrix for binary classification prob-
lems, as shown in Table  1.
3 
Table 1
Example of a general confusion matrix.
 Ground truth Total

 Positive Negative  
 Predicted value Positive 𝑡𝑝 𝑓𝑝 𝑃 ′  
 Negative 𝑓𝑛 𝑡𝑛 𝑁 ′  
 Total 𝑃 𝑁 𝑇

In order to be thorough, and to avoid any possible confusion that 
may be caused due to notation inconsistencies in existing literature, 
attention is brought to the following notation:

• The number of instances in the positive class is 𝑃 = 𝑡𝑝 + 𝑓𝑛.
• The number of instances in the negative class is 𝑁 = 𝑡𝑛 + 𝑓𝑝.
• The number of instances classified as in the positive class is 𝑃 ′ =
𝑡𝑝 + 𝑓𝑝.

• The number of instances classified as in the negative class is 
𝑁 ′ = 𝑓𝑛 + 𝑡𝑛.

• The confusion matrix has four degrees of freedom. However, this 
can be reduced to two degrees of freedom as follows:

– because 𝑃  is constant, 𝑓𝑛 can be omitted and (𝑃 − 𝑡𝑝) used, 
and

– because 𝑁 is constant, 𝑡𝑛 can be omitted and (𝑁 −𝑓𝑝) used.

Additionally, for the sake of brevity, it is often seen that metric func-
tions are stylised as not having any input parameters. Hence, a metric 
which is a function of the number of true positives, true negatives, false 
positives, and false negatives, i.e. 𝑓 (𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛), is simply referred to as 
𝑓 .

Table  2 outlines simple metrics using the symbols defined above.
The nomenclature inconsistencies from existing literature are il-

lustrated further by the entries in Table  2, where some entries have 
multiple names (e.g. TPR = sensitivity = recall). In order to clarify the 
confusion that can be caused by these naming inconsistencies, Canbek 
et al. defined a periodic table of performance instruments (PToPI) 
in [28]. The PToPI defines a hierarchy which outlines the relational 
structure of ‘‘performance instruments’’. Canbek et al. performed an 
exhaustive analysis and provided a full taxonomy, hence the term 
‘‘performance instruments’’ is used as an umbrella-term for any formula 
which is used to evaluate how well a model performs. Categories 
of performance instruments defined by Canbek et al. include base 
measures, 1st level measures, 2nd level measures, 3rd level measures, 
base metrics, 1st level metrics, and 2nd level metrics.

This paper is concerned with binary classification metrics, and not 
the full spectrum of performance instruments. Hence, for brevity, a 
simplified naming schema is used which consists of the following:

• Measures: components of the confusion matrix. This category 
includes true positives, false positives, true negatives, false nega-
tives, the number of positive instances, the number of negative 
instances, the total number of instances, the sum of instances 
classified as the target class and the sum of instances classified 
as part of the non-target class.

• Rates: normalised versions of entries in the confusion matrix 
(entries which have been divided by their maximum value). The 
category of rates includes the true positive rate, false positive rate, 
true negative rate, false negative rate, positive predictive value, 
negative predictive value, false discovery, rate and false omission 
rate.

• Metrics: more complex performance instruments constructed 
from measures and rates.

The above-mentioned classification schema is not exhaustive, and is 
simply provided to improve coherence. For a comprehensive system, 
the reader is referred to [28].
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Table 2
Symbols used throughout this paper.
 Symbol Meaning Equation 
 𝛷𝑡𝑝 The true positive rate (TPR) is also referred to as sensitivity 

or recall. It is the number of instances correctly classified as 
the target class compared to the total number of instances in 
the target class.

𝑡𝑝
𝑃

 

 𝛷𝑓𝑝 The false positive rate (FRP), also known as the fall-out, is 
the ratio of the number of instances incorrectly identified as 
a part of the target class to the number of instances in the 
target class.

𝑓𝑝
𝑁

 

 𝛷𝑡𝑛 The true negative rate (TNR) contextualises the number of 
instances correctly classified as not belonging to the target 
class. This metric is also referred to as specificity or 
selectivity.

𝑡𝑛
𝑁

 

 𝛷𝑓𝑛 The false negative rate (FNR), or miss rate, weighs the 
number of instances incorrectly classified as not belonging to 
the target class against the number of instances in the target 
class.

𝑓𝑛
𝑃

 

 𝜌𝑡𝑝 The positive predictive value (PPV) is the proportion of true 
positives to the total number of instances classified as the 
target class. It is also referred to as precision.

𝑡𝑝
𝑃 ′  

 𝜌𝑡𝑛 The negative predictive value (NPV) is the proportion of true 
negatives to the total number of instances attributed to not 
belonging to the target class.

𝑡𝑛
𝑁 ′  

 𝜌𝑓𝑝 The false discovery rate (FDR) quantifies the number of type 
I errors made by a classifier because it proportions the 
number of false positives to the total number of instances 
assigned to the target class.

𝑓𝑝
𝑃 ′  

 𝜌𝑓𝑛 The false omission rate (FOR) is the proportion of instances 
incorrectly assigned a non-target class value compared to the 
total number of instances assigned to the non-target class.

𝑓𝑛
𝑁 ′  
3.3. Sobol’ sensitivity analysis

SA is the process by which the effect of different input variables on 
a function output is quantified. Sobol pioneered sensitivity estimates 
for nonlinear mathematical models in 1993 and proved a theorem that 
an integrable function can be decomposed into the sum of different 
components for SA [29]. This approach, functional analysis of variance, 
is a technique used to quantify the effect that an input variable has on 
a mathematical function. Sobol investigated performing Monte Carlo 
simulations to determine sensitivity estimation with respect to a group 
of variables, as well as the effect of freezing unessential variables. 
Functional analysis of variance has since been expanded to include 
approaches based on sequence kernel association tests [30], func-
tional linear models [31], and Bayesian non-parametric modelling [32]. 
This paper uses a popular open-source python implementation1 for SA 
from [33,34]. The remainder of this section outlines the background 
information on the utilised SA method, referred to as S’SA.

In S’SA, points are sampled from the domain of valid variable 
inputs through a quasi-Monte Carlo technique, called Sobol’ sequence 
(SS) sampling. The approach for sampling SSs is given in [35], with 
complexity improvements for the sampling process given in [36]. En-
hancements of the quasi-randomness was proposed in [37], after which 
a stability study was performed on the sampling algorithm and is given 
in [38].

From the sampled SS, global sensitivity indices are calculated to per-
form analysis of variance (ANOVA); these sensitivity indices are used to 
estimate the influence of individual variables and subsets of variables 
on the model output. The calculation of Sobol’ sensitivity indices are 
outlined in [35]. Sobol’ sensitivity indices are categorised as first-order 
(𝑆1), which quantify the influence of individual input variables on the 
output, and second order (𝑆2), which quantify the influence of pairs of 

1 https://github.com/salib/salib.
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variables. Modifications to the first-order sensitivity calculations were 
presented in [39], with modifications for the second order sensitivity 
calculations given in [36]. Finally, error reducing improvements were 
incorporated in [40]. A brief overview of the calculations required to 
calculate the global sensitivity indices as presented by Sobol’ [35] is 
provided below.

In order to perform ANOVA, Sobol’ uses a unit interval (𝐼 = [0, 1]) 
to represent the input space as a 𝑑-dimensional unit hypercube (𝐼𝑑). 
Consider an integrable function defined on 𝐼𝑑 in the form 

𝑓 (𝒙) = 𝑓0 +
𝑑
∑

𝑠=1

𝑑
∑

𝑖1<⋯<𝑖𝑠

𝑓𝑖1…𝑖𝑠 (𝑥𝑖1 ,… , 𝑥𝑖𝑠 ), (2)

where 1 ≤ 𝑖1 < ⋯ < 𝑖𝑠 ≤ 𝑑. Eq. (2) is called the ANOVA-representation 
of the function 𝑓 (𝑥) if 

∫

1

0
𝑓𝑖1…𝑖𝑠 (𝑥𝑖1 ,… , 𝑥𝑖𝑠 ) 𝑑𝑥𝑘 for 𝑘 = 𝑖1,… , 𝑖𝑠. (3)

Assuming that 𝑓 is square integrable, and that each component of 
the decomposition of 𝑓 is square integrable, squaring and integrating 
results in 

∫

1

0
𝑓 2𝑑𝑥 − 𝑓 2

0 =
𝑑
∑

𝑠=1

𝑑
∑

𝑖1<⋯<𝑖𝑠
∫

1

0
𝑓 2
𝑖1…𝑖𝑠

𝑑𝑥𝑖1 … 𝑑𝑥𝑖𝑠 . (4)

From which the constants, 

𝐷 = ∫

1

0
𝑓 2𝑑𝑥 − 𝑓 2

0 , (5)

and 

𝐷𝑖1…𝑖𝑠 =
𝑑
∑

𝑠=1

𝑑
∑

𝑖1<⋯<𝑖𝑠
∫

1

0
𝑓 2
𝑖1…𝑖𝑠

𝑑𝑥𝑖1 … 𝑑𝑥𝑖𝑠 (6)

are defined. The constant 𝐷 is the total variance of the output and 
𝐷  is the variance attributed to the subset of variables, 𝑖 … 𝑖 .
𝑖1…𝑖𝑠 1 𝑠

https://github.com/salib/salib
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The global sensitivity index of a subset of variables, 𝑖1 … 𝑖𝑠, is 
defined as 

𝑆𝑖1…𝑖𝑠 =
𝐷𝑖1…𝑖𝑠
𝐷

(7)

The sensitivity indices are used to calculate how much of the total 
variance of a function output is attributable to a specific variable or 
subset of variables. The main effect of an input variable 𝑥𝑗 is given by 
the corresponding first-order sensitivity index 𝑆𝑥𝑗 .

For this study on the effect of CI on metric performance, S’SA is used 
to determine how sensitive a given metric is to an input parameter (i.e., 
𝑡𝑝, 𝑓𝑝, 𝑡𝑛, 𝑓𝑛) under different levels of CI.

4. Metric normalisation process

The purpose of this paper is three-fold: to provide a comprehensive 
review on the origin of existing metrics, to determine the sensitivity 
of the metrics to CI, and to propose variations of the existing metrics 
which are more robust to CI.

This paper uses normalisation to create modified versions of ex-
isting metrics, in the hope that existing metrics can be made more 
robust to CI. The fact that components which represent the majority 
class come to dominate existing metrics, serves as motivation behind 
the normalisation process. The approach to create new metrics is to 
normalise the constituent parts of existing metrics. The normalisation 
of the components of a metric scales the output of each component 
of the metric to [0, 1]. Components with the same output range have 
the same influence on the final metric value, contrary to components 
which vastly different influences due to vastly different output ranges. 
The normalisation process followed is:

1. simplify the metric into elementary form such that it consists 
solely of measures,

2. normalise each measure in the metric, so that each measure 
becomes a rate,

3. scale the metric so that the output is in [0, 1] and the optimum 
is at 1.

In order to normalise measures within a metric, a function 𝑔 ∶  →
 is defined, where  is the set of measures and  is the set of rates. 
The function, 𝑔, is defined as 

𝑔(𝑚) =

{

𝑚
𝑃 if 𝑚 ∈ {𝑡𝑝, 𝑓𝑛},
𝑚
𝑁 if 𝑚 ∈ {𝑡𝑛, 𝑓𝑝}.

(8)

Instances of other measures, e.g. 𝑃 , 𝑁 , 𝑃 ′ and 𝑁 ′, are implicitly 
handled by 𝑔 since these measures can be reformulated in terms of 𝑡𝑝, 
𝑓𝑝, 𝑡𝑛 and 𝑓𝑛.

For example, to modify an existing metric, true positives (𝑡𝑝) are 
divided by the total number of positive instances (𝑃 ), which results in 
the true positive rate (𝛷𝑡𝑝 ). Similarly, the false positives (𝑓𝑝) are divided 
by the number of available negative instances (𝑁), which results in 
the false positive rate (𝛷𝑓𝑝 ). This normalisation process is applied to 
existing metrics from literature which are not already defined in terms 
of rates.

5. Existing performance metrics for classification

This section outlines the existing metrics currently popular in liter-
ature.

5.1. Accuracy

Accuracy is a ubiquitous metric in the modern ML community, and 
it is unfortunately not possible to pinpoint a single seminal paper which 
proposed the metric of classification accuracy. The idea of ‘‘percentage 
of correct instance’’ pre-dates ML and artificial intelligence in fields 
such as biology and meteorology. The use of ‘‘accuracy’’ in ML is 
5 
present in the inaugural paper on The Perceptron, where Rosenblatt 
calculated the probability that the perceptron gives the correct response 
to a stimulus as 𝑃𝑟 [41].

The accuracy metric as defined by Fürnkranz and Flach [27] ac-
counts for both the correctly covered instances and incorrectly covered 
instances. Accuracy is an improvement over the basic strategy of simply 
trying to maximise the number of true positives or to minimise the 
number of false positives. By accounting for both objectives, the metric 
aims to find a solution that compromises well between classifying as 
many instances of the target class correctly, while not inadvertently 
also classifying instances from the non-target class as part of the target 
class.

The accuracy metric is defined as 

𝐴 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
(9)

5.2. Gilbert’s ratio of verification

Gilbert’s ratio of verification has its origins in the study of mete-
orology, with a full history of this metric summarised in [42]. The 
fundamental idea behind this metric has been in literature for over 100
years as first communicated in [43] as criticism of Finley’s publication 
on the accuracy of tornado predictions [44]. Gilbert [43] outlined the 
fallacy behind the evaluation method that Finley used to quantify the 
success of tornado predictions and suggested an alternative approach 
called the ‘‘ratio of verification’’. Gilbert’s ratio of verification was 
proposed with the symbol 𝜈 and expressed as 
𝜈 = 𝑐

𝑜 + 𝑝 − 𝑐
(10)

where 𝑐 is the number of verified predictions, 𝑜 is the total number of 
occurrences, and 𝑝 is the number of positive predictions.

Gilbert’s ratio has been reproposed multiple times, with two notable 
proposals characterised by new names for the metric, e.g. threat score 
(TS) from [45] and critical success index (CSI) from [46]. Both the TS 
and the CSI are essentially 𝜈 rewritten using 𝑡𝑝, 𝑓𝑝 and 𝑓𝑛. However, 
both are more commonly used terms in the domain of ML evaluation 
metrics. The formula for these scores is 

TS = CSI =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝
(11)

The remainder of this paper uses the index as defined in Eq.  (11), but 
uses the symbol 𝜈 in homage to Gilbert as the original proposer.

5.3. Balanced accuracy

Five metrics, i.e. balanced accuracy, Pierce’s 𝐼 , Youden’s 𝐽 statis-
tic, bookmaker’s informedness, and area under the ROC curve, are 
inextricably linked; hence, these five metrics are presented together.
Pierce’s I. Pierce, similarly to Gilbert, saw the error of Finley’s method 
and proposed another alternative which is now referred to as Pierce’s 
𝐼 [47]. Pierce originally proposed 

𝐼 =
(𝑎𝑎)

(𝑎𝑎) + (𝑏𝑎)
−

(𝑎𝑏)
(𝑎𝑏) + (𝑏𝑏)

, (12)

where (𝑎𝑎) = 𝑡𝑝, (𝑎𝑏) = 𝑓𝑝, (𝑏𝑎) = 𝑓𝑛, and (𝑏𝑏) = 𝑡𝑛.

Youden’s J. Youden initially developed the 𝐽 statistic to judge how 
well a diagnostic test performs [48]. Youden’s proposed statistic is an 
early attempt at addressing the shortcomings of simpler metrics which 
do not account for both correctly classifying target instances and non-
target instances. Reviews of the 𝐽 statistic in medical applications have 
expressed concern that there is no mechanism to apply weights to 
either of the two components (𝛷𝑡𝑝 , 𝛷𝑡𝑛 ) to make one or the other more 
important [49]. Youden’s 𝐽 statistic is 
𝐽 = 𝛷𝑡𝑝 +𝛷𝑡𝑛 − 1. (13)
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Bookmaker’s informedness. The bookmaker’s informedness metric was 
proposed in [50] by Powers. The rationale of Powers was that a good 
way to estimate how suitable a classifier is, is to compare the classifier 
to how well a person betting on fair odds would perform against a 
random guesser. The formulation of bookmaker’s informedness is the 
same as Eq. (13).
Area under the receiver operating characteristic curve. ROC curve analysis 
is a technique developed in the second world war to determine how 
successful military radars were at distinguishing between enemy aero-
planes and signal noise. The origin of ROC curves is slightly obscured 
due to the nature of the situation in which it was created. However, 
to the knowledge of the author, one of the earliest references to ROC 
curves was made by Peterson in a paper completed for the U.S. Army 
Signal Corps [51].

After its successful use in signal detection for military application, 
ROC curve analysis was applied to evaluate a new theory of visual 
detection in a psychological context by Tanner and Swets [52]. Since 
the application in [52], ROC analysis has been an integral tool for the 
medical diagnosis field [53–55]. However, it was not until Spackman’s 
application of ROC curve analysis to ML problems in [56] that the 
technique started gaining popularity in the ML community.

A ROC curve is generated by plotting the 𝛷𝑡𝑝  on the 𝑦-axis against 
the 𝛷𝑓𝑝  on the 𝑥-axis for different threshold values of the classifier. 
These two-dimensional graphs depict the trade-off that a classifier has 
to make when assigning instances to the target class. The classification 
of all instances as the target class results in a perfect score for that 
class, but incorrectly classifies all non-target class instances. This gives 
the user the ability to measure the sensitivity of the classifier against 
the fall-out of the classifier.

A ROC graph has a range and domain of [0, 1], with four salient 
(𝑥, 𝑦) points on the graph. The following list outlines what points on 
the ROC curve in the vicinity of different 𝑥 and 𝑦 values (denoted as 
∼ (𝑥, 𝑦)) indicate:

• ∼ (0, 0) represents a classifier which classifies all instances as part 
of the non-target class.

• ∼ (0, 1) represents a classifier a perfect classifier.
• ∼ (1, 0) represents a classifier which classifies all instances (of the 
target class and non-target class) incorrectly, i.e. all classifications 
are opposite to the ground truth.

• ∼ (1, 1) represents a classifier which classifies all instances as part 
of the target class.

Fig.  1 depicts a single point on the ROC curve.
The area under the curve (AUC) of the ROC curve can be estimated 

by decomposing the plot into one rectangle and two triangles. The 
formulas for the area of a square, 𝐴̇□, and the area of a triangle, 𝐴̇▵, are 
defined as 𝐴̇□ = 𝑙 ⋅𝑤 (where 𝑙 is the length of a side and 𝑤 the width) 
and 𝐴̇▵ = 1

2 ⋅𝑏 ⋅ℎ (where 𝑏 is the base of the triangle and ℎ is the hight). 
The total AUC is defined as the sum of the main rectangular body (□) 
and the two triangles (▵1 and ▵2), resulting in 𝐴̇𝑅𝑂𝐶 = 𝐴̇□+𝐴▵1

+𝐴▵2
. 

The simplification from the area calculation to the arithmetic mean is 
shown below: 
𝐴̇𝑅𝑂𝐶 =

(

𝐴̇□ + 𝐴̇▵1 + 𝐴̇▵2
)

=
(

𝑙 ⋅ 𝑏 + 1
2
⋅ 𝑏1 ⋅ ℎ1 +

1
2
⋅ 𝑏2 ⋅ ℎ2

)

=
(

(1 −𝛷𝑓𝑝 ) ⋅𝛷𝑡𝑝 +
1
2
⋅𝛷𝑓𝑝 ⋅𝛷𝑡𝑝 +

1
2
⋅ (1 −𝛷𝑓𝑝 ) ⋅ (1 −𝛷𝑡𝑝 )

)

=
𝛷𝑡𝑝 +𝛷𝑡𝑛

2

(14)

Balanced accuracy. Brodersen et al. used a probabilistic view of per-
formance evaluation to propose the balanced accuracy metric [57]. 
Balanced accuracy aims to provide generic safeguards against reporting 
an optimistic accuracy estimate, which can be caused by CI. A further 
6 
Fig. 1. Trigonometric properties of a single point ROC curve.

motivation given for balanced accuracy is to fix the impossible statisti-
cal situation where confidence intervals of conventional accuracy can 
exceed 100% [57]. Balanced accuracy is given as 

BA =
𝛷𝑡𝑝 +𝛷𝑡𝑛

2
. (15)

‘‘Metric B’’. The five metrics discussed in this section are either equiva-
lent to, or estimators of each other (𝛷𝑡𝑝 +𝛷𝑡𝑛 −1 ∝

𝛷𝑡𝑝+𝛷𝑡𝑛
2 ). It would be 

superfluous to analyse each individually, given that all metrics in this 
paper are modified to be in the range [0, 1]. Therefore, the following 
metric is used 

𝐵 =
𝛷𝑡𝑝 +𝛷𝑡𝑛

2
. (16)

5.4. 𝐹 -Measures

The 𝐹 -measure is a family of metrics which weight the precision and 
recall of a classifier against each other. These metrics stem from work 
done by Van Rijsbergen [58] in the book Information Retrieval. Van 
Rijsbergen developed an effectiveness measure to balance the trade-off 
between the precision and recall of a search result from text. Initially, 
Van Rijsbergen’s measure achieved this balance by using a parameter 
𝛼 as follows: 
𝐸 = 1 − 1

𝛼( 1
𝜌𝑡𝑝

) + (1 − 𝛼) 1
𝛷𝑡𝑝

(17)

where 𝜌𝑡𝑝  is the precision and 𝛷𝑡𝑝  is the recall (as defined in Table  2). 
To facilitate interpretation of the function, Van Rijsbergen applied the 
transformation 𝛼 = 1

𝛽2+1  to Eq.  (17). This results in the general form of 
the 𝐹  score as follows: 

𝐹𝛽 = (1 + 𝛽2)
( 𝑡𝑝
𝑡𝑝+𝑓𝑝

) ⋅ ( 𝑡𝑝
𝑡𝑝+𝑓𝑛

)

𝛽2 ⋅ ( 𝑡𝑝
𝑡𝑝+𝑓𝑝

) + ( 𝑡𝑝
𝑡𝑝+𝑓𝑛

)
(18)

Eq. (18) defines the popular metric 𝐹1 which is used in this paper.
To define the 𝐹1 metric, 𝛽 is set to 1 in Eq.  (18). This results in 

a function which calculates the harmonic mean between the precision 
and recall metrics of a classifier. Through simple algebraic manipula-
tion, the 𝐹1 score is transformed to consist of only measures as follows: 

𝐹1 =
2 ⋅ 𝑡𝑝 (19)
2 ⋅ 𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝
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5.5. Kappa

Cohen’s Kappa (𝜅) is a similarity statistic developed by Cohen in 
1960 for use in determining the overlap in identical values between 
variables (in the original article, these variables were the diagnoses 
given by various psychologists) [59]. Although Cohen’s Kappa is the 
most popular version of this form of metric, it was not the first. An 
equivalent formulation of this metric was proposed 34 years prior by 
Heidke and was used to measure how well wind forecasts are made. 
Heidke’s original metric was termed the Heidke skill score (HSS) [60]. 
However, Cohen’s formulation and notation is currently used almost 
exclusively.

What makes Cohen’s metric unique and significant, is that it takes 
into consideration the probability of a coincidental similarity between 
variables. Cohen proposed the Kappa metric to account for unrelated 
chance being interpreted as apparent causation.

Cohen’s Kappa coefficient is defined as 

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

(20)

where 𝑝𝑜 is the observed agreement between variables and 𝑝𝑒 is the 
expected probability of agreement between variables due to chance. In 
the context of classification, the observed agreement is the accuracy of 
the classification (𝑝𝑜 =

𝑡𝑝+𝑡𝑛
𝑃+𝑁 ). The expected probability of agreement is 

defined as the expected accuracy between two statistically independent 
observations, i.e. 𝑝𝑒 =

( 𝑡𝑝+𝑓𝑝
𝑃+𝑁 ⋅

𝑡𝑝+𝑓𝑛
𝑃+𝑁

)

+
( 𝑡𝑛+𝑓𝑝

𝑃+𝑁 ⋅ 𝑡𝑛+𝑓𝑛
𝑃+𝑁

)

. Substitution of 
the values for 𝑝𝑜 and 𝑝𝑒 and the simplification of the subsequent formula 
results in a more convenient form of the Kappa coefficient using base 
measures as follows: 

𝜅 = 1
2
⋅
( 2 ⋅ (𝑡𝑝 ⋅ 𝑡𝑛 − 𝑓𝑝 ⋅ 𝑓𝑛)
(𝑡𝑝 + 𝑓𝑝) ⋅ (𝑓𝑝 + 𝑡𝑛) + (𝑡𝑝 + 𝑓𝑛) ⋅ (𝑓𝑛 + 𝑡𝑛)

+ 1
)

. (21)

Note that this form of Kappa is scaled to be in the range [0, 1] for 
balanced data, but under extreme levels of CI the range of Kappa tends 
to [0.5, 1.0].

5.6. Laplace estimate

Laplace developed the rule of succession as a probability estimator 
for seemingly certain events using the example of calculating the 
probability that the sun rises tomorrow [61]. The Laplace estimate is 
similar in form to the classical precision metric, but encourages more 
instances to be classified instead of encouraging a small number of 
perfectly classified instances. This is because with Laplace’s estimate, 
a small number of classified instances equates to randomly guessing to 
which class an instance belongs [26]. When the number of instances 
classified tends to infinity, the Laplace estimator behaviour becomes 
identical to that of precision.

The Laplace estimator formula is given as 

𝐿 =
𝑡𝑝 + 1

𝑡𝑝 + 𝑓𝑝 + 2
(22)

5.7. Matthew’s correlation coefficient

MCC is a performance metric shown to be a good quantifier of the 
relationship between the predicted values of a classifier and the true 
values of the dataset [62]. Early versions of this metric were proposed 
by Yule and refined by Pearson as the 𝜙 (mean square contingency) 
coefficient [63,64].

However, the metric was later repopularised by Matthews [65], 
for whom this metric is named, to compare structural similarities in 
lysozymes in work in the biological sciences. This metric was then 
first used for ML applications by Baldi et al. [66] and has since been 
established in the field.

MCC uses all four possible input variables (i.e. 𝑡𝑝, 𝑓𝑝, 𝑡𝑛 and 𝑓𝑛) 
and gives an indication of how well a pair of variables are correlated. 
7 
When the performance of a classification or rule induction algorithm 
is evaluated, the two variables for which the correlation is measured is 
the true labels and the predicted labels.

The equation for the MCC metric is outlined as 

MCC = 1
2
⋅

(

𝑡𝑝 ⋅ 𝑡𝑛 − 𝑓𝑝 ⋅ 𝑓𝑛
√

(𝑡𝑝 + 𝑓𝑝)(𝑡𝑝 + 𝑓𝑛)(𝑡𝑛 + 𝑓𝑝)(𝑡𝑛 + 𝑓𝑛)
+ 1

)

(23)

5.8. Markedness

Powers [67] proposed a metric called markedness (MK), named 
after the psychological and linguistic terms of condition and marker. 
A condition is an experimental outcome that is determined by indirect 
means and a predictor is the indicator that is used to determine the 
outcome.

The MK metric maps the classification performance of a model to 
the line 𝜌𝑡𝑝+𝜌𝑡𝑛 = 1, which represents the trade-off between the positive 
predictive value (𝜌𝑡𝑝 ) and the negative predictive value (𝜌𝑡𝑛 ). To keep 
with the general metric structure of this paper where all metrics are 
scaled between [0, 1], the MK metric is modified slightly and takes the 
form of the arithmetic mean between PPV and NPV: 
MK = 𝜌𝑡𝑝 + 𝜌𝑡𝑛 − 1

∝
𝜌𝑡𝑝 + 𝜌𝑡𝑛

2

(24)

5.9. Fowlkes-Mallows index

Fowlkes and Mallows [68] derived and outlined a measure of simi-
larity for two different hierarchical clusterings, known as the Fowlkes-
Mallows index (FMI).

The original definition (with non-overloaded symbols) for the FMI 
metric given by Fowlkes and Mallows is 

𝑀𝑘 =
𝑇𝑘

√

𝑃𝑘 ⋅𝑄𝑘
(25)

where

𝑇𝑘 =
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝑚2
𝑖𝑗 − 𝑛

𝑚𝑖⋅ =
𝑘
∑

𝑗=1
𝑚𝑖𝑗

𝑚⋅𝑗 =
𝑘
∑

𝑖=1
𝑚𝑖𝑗

𝑚⋅⋅ = 𝑛𝑐 =
𝑘
∑

𝑖=1

𝑘
∑

𝑗=1
𝑚𝑖𝑗

𝑃𝑘 =
𝑘
∑

𝑖=1
𝑚2
𝑖⋅ − 𝑛𝑐

𝑄𝑘 =
𝑘
∑

𝑗=1
𝑚2
⋅𝑗 − 𝑛𝑐

From the original proposal in Eq.  (25), an interpretation of FMI for 
classification performance evaluation was proposed in [69], which 
defines the FMI metric as the geometric mean between precision and 
recall as follows: 
FMI =

√

𝛷𝑡𝑝 ⋅ 𝜌𝑡𝑝 (26)

5.10. Optimised precision

Optimised precision is a metric proposed by Ranawana and Palade 
as an improved heuristic used to train multi-classifier systems [70]. 
However, name ‘‘optimised precision’’ is a misnomer as the formulation 
given for precision by authors of the metric is in fact accuracy.
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Ranawana and Palade outlined the potential issues of training on 
a dataset with a large proportion of non-target class instances, and 
proposed that a solution is to simultaneously minimise (|𝛷𝑡𝑛 −𝛷𝑡𝑝 |) and 
maximise (𝛷𝑡𝑛 +𝛷𝑡𝑝 ). The solution given is to incorporate a new metric 
named relationship index, the relationship index is defined as 

𝑅𝐼 =
|𝛷𝑡𝑛 −𝛷𝑡𝑝 |

𝛷𝑡𝑛 +𝛷𝑡𝑝
. (27)

The final metric for optimised precision is 
𝑂𝑃 = 𝐴 − 𝑅𝐼

=
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
−

|𝛷𝑡𝑛 −𝛷𝑡𝑝 |

𝛷𝑡𝑛 +𝛷𝑡𝑝

∝ 1
2
⋅

(

𝑡𝑝 + 𝑡𝑛
𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛

−
|𝛷𝑡𝑛 −𝛷𝑡𝑝 |

𝛷𝑡𝑛 +𝛷𝑡𝑝
+ 1

)

.

(28)

5.11. Matthew’s correlation coefficient-F1 metric

As part of an attempt to develop an improved alternative to the pop-
ular ROC curve and PR curve analysis techniques, Cao et al. proposed 
the MCC-F1 curve and the corresponding MCC-F1 metric [71]. Cao et al. 
claimed that the MCC-F1 is more informative than the ROC and PR 
curves, because MCC-F1 summarises the whole confusion matrix instead 
of only parts of the confusion matrix. The MCC-F1 curve plots the values 
of a normalised MMC against F1 for different threshold values and the 
MCC-F1 metric then calculates the average distance between the points 
on the MCC-F1 curve resulting from different thresholds to the point 
representing an idealistic classifier.

The metric is calculated as follows over different threshold val-
ues: 𝑛𝑇  thresholds are used to test a classifier, for each point 𝑖 ∈
{0, 1,… , 𝑛𝑇 − 1} the prediction score 𝑓 (𝑥𝑖) is calculated and the unit 
normalised MMC value, 𝑋𝑖, as well as the F1 value, 𝑌𝑖, is identified. The 
MMC values are divided into 𝑊 = 100 subranges, each with a width of 
𝑤 = (max𝑖 𝑋𝑖 −min𝑖 𝑋𝑖)∕𝑊 . The Euclidean distance of a point 𝑖 and the 
perfect classifier point (1, 1) is calculated using 

𝐷𝑖 =
√

(𝑋𝑖 − 1)2 + (𝑌𝑖 − 1)2 (29)

The maximum distance possible between a point 𝑖 and the ideal clas-
sifier occurs if 𝑖 represents the worst possible classifier at (0, 0). This 
worst-case distance is 

√

2. The MCC-F1 curve is then divided into two 
sides, left (L) and right (R), and the set of points in the subranges of 
each side is calculated as 𝑍𝑠

𝑗 , with 𝑗 ∈ {0, 1,… ,𝑊 − 1} and 𝑠 ∈ {𝐿,𝑅}. 
The number of points in these sets is defined by 
𝑛𝑠𝑗 = |𝑍𝑠

𝑗 | (30)

For the sets with a non-zero number of points, the mean distance 𝐷̄𝑠
𝑗 is 

defined by 

𝐷̄𝑠
𝑗 =

∑

𝑖∈𝑍𝑠
𝑗
𝐷𝑖

𝑛𝑠𝑗
(31)

All pairs of sides and subranges  = (𝑠, 𝑗) for non-zero 𝑍𝑠
𝑗  are identified; 

the generator function for this set is given as 
 = {(𝑠, 𝑗)|𝑠 ∈ {𝐿,𝑅}, 𝑗 ∈ {0, 1,… ,𝑊 − 1}, 𝑛𝑠𝑗 > 0} (32)

To get the grand average 𝐷∗, mean distances 𝐷̄𝑠
𝑗 are averaged over the 

 pairs as shown below: 

𝐷∗ =

∑

(𝑠,𝑗)∈ 𝐷̄𝑠
𝑗

||

(33)

Division of the grand average by the hypothetical max distance results 
in the final metric of 
MCC-F1 = 1 − 𝐷∗

√

2
(34)

Computation of the MCC-F1 metric for only one threshold simplifies 
the process somewhat. One threshold creates the conditions 𝑛 = 1
𝑇

8 
and 𝑖 = {1}, meaning that 𝑛𝑠𝑗 = 0 except for one value of 𝑗, i.e.
|{𝑛𝑠𝑗 ∶ 𝑛𝑠𝑗 > 0}| = 1. The mean distance then becomes 

𝐷̄𝑠
𝑗 =

𝐷1
1

(35)

The set of (side, subrange) pairs then also contains only one point, 
giving the grand average the same formula as the mean distance, i.e. 

𝐷∗ =
𝐷1
1

(36)

Finally, the metric becomes 

MCC-F1 =
𝐷1
√

2
= 1 −

√

(F1 − 1)2 + (MCC − 1)2
√

2
(37)

5.12. Sensitivity specificity geometric mean

Similar to how the FMI is the geometric mean between the precision 
and recall, the geometric mean between the 𝛷𝑡𝑝  and 𝛷𝑡𝑛  has also been 
used in [72]. Kubat et al. [72] proposed this metric to evaluate the 
performance of systems detecting oil spills. It aims to maximise the 
accuracy on both the positive class and negative class, and to minimise 
the discrepancy in the levels of accuracy between these two classes. 
The original authors simply referred to their metric as 𝑔 (for geometric 
mean) and used 𝑎+ to mean 𝛷𝑡𝑝  and 𝑎− to mean 𝛷𝑡𝑛 . The original 
formula is 

𝑔 =
√

𝑎+ ⋅ 𝑎− (38)

In order to prevent confusion by using a general term like geometric 
mean (𝑔) to mean a specific implementation thereof, this paper refers 
to the metric of this section specifically as the geometric mean between 
the sensitivity (𝛷𝑡𝑝 ) and specificity (𝛷𝑡𝑝 ). Therefore, the geometric 
mean between the sensitivity and specificity (𝐺𝑆𝑆 ) is 

𝐺𝑆𝑆 =
√

𝛷𝑡𝑝 ⋅𝛷𝑡𝑛 (39)

5.13. Index of balanced accuracy

The index of balanced accuracy (IBA) was proposed by García et al. 
for evaluating two-class problems in imbalanced domains [73]. IBA 
combines the geometric mean of TPR and TNR with a dominance 
relation between TPR and TNR. García et al. also proposed that the 
dominance relation can be combined with any metric, in order to make 
the metric more robust to CI [74].

For IBA, the geometric mean component is as defined by Kubat et al. 
in Eq.  (38), and the dominance relation is 

𝑑 = 𝛷𝑡𝑝 −𝛷𝑡𝑛 . (40)

García et al. combined Eqs. (38) and (40) and defined IBA as 
𝐼𝐵𝐴 = (1 + 𝑑) ⋅ 𝑔2

= 𝛷𝑡𝑝𝛷𝑡𝑛 ⋅ (1 +𝛷𝑡𝑝 −𝛷𝑡𝑛 )
(41)

6. Modified performance metrics for classification

This section proposes the modified metrics, based on the metrics in 
Section 5 which are constructed from elements of the confusion matrix 
and not on rates. Sections 6.1 to 6.7 present modified versions of the 
metrics summarised in Section 5. Further, Sections 6.8 to 6.11 present 
new metrics inspired by the popularity of using averages of either 
sensitivity and specificity, or precision and recall. Sections 6.8 to 6.11 
ensure that all variations of means (arithmetic, harmonic, geometric, 
and quadratic) are applied to these popular combinations.
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6.1. Modified Gilbert’s ratio of verification

This section proposes to modify Gilbert’s ratio of verification. The 
starting point is 𝜈 from Eq.  (10), and the final result of 𝜈𝜄 is obtained 
by 
𝜈
(

𝑔(𝑡𝑝), 𝑔(𝑡𝑛), 𝑔(𝑓𝑝), 𝑔(𝑓𝑛)
)

=
𝑡𝑝
𝑃

𝑡𝑝
𝑃 + 𝑓𝑛

𝑃 + 𝑓𝑝
𝑁

=
𝛷𝑡𝑝

𝛷𝑡𝑝 +𝛷𝑓𝑛 +𝛷𝑓𝑝

= 𝜈𝜄

(42)

6.2. Modified 𝐹1 measure

The algebraically simplified version of the 𝐹1 metric posed in
Eq.  (19) is modified to create a new metric, 𝐹𝜄, i.e. 
𝐹1

(

𝑔(𝑡𝑝), 𝑔(𝑡𝑛), 𝑔(𝑓𝑝), 𝑔(𝑓𝑛)
)

=
2 ⋅ 𝑡𝑝

𝑃

2 ⋅ 𝑡𝑝
𝑃 + 𝑓𝑛

𝑃 + 𝑓𝑝
𝑁

=
2 ⋅𝛷𝑡𝑝

2 ⋅𝛷𝑡𝑝 +𝛷𝑓𝑛 +𝛷𝑓𝑝

= 𝐹𝜄

(43)

6.3. Modified Kappa

The Cohen’s Kappa metric from Eq.  (21) is normalised below: 
𝜅
(

𝑔(𝑡𝑝), 𝑔(𝑡𝑛), 𝑔(𝑓𝑝), 𝑔(𝑓𝑛)
)

= 1
2
⋅
⎛

⎜

⎜

⎝

2 ⋅ ( 𝑡𝑝𝑃 ⋅ 𝑡𝑛
𝑁 − 𝑓𝑝

𝑁 ⋅ 𝑓𝑛
𝑃 )

( 𝑡𝑝𝑃 + 𝑓𝑝
𝑁 ) ⋅ ( 𝑓𝑝𝑁 + 𝑡𝑛

𝑁 ) + ( 𝑡𝑝𝑃 + 𝑓𝑛
𝑃 ) ⋅ ( 𝑓𝑛𝑃 + 𝑡𝑛

𝑁 )
+ 1

⎞

⎟

⎟

⎠

= 1
2
⋅

(

2 ⋅ (𝛷𝑡𝑝 ⋅𝛷𝑡𝑛 −𝛷𝑓𝑝 ⋅𝛷𝑓𝑛 )

(𝛷𝑡𝑝 +𝛷𝑓𝑝 ) ⋅ (𝛷𝑓𝑝 +𝛷𝑡𝑛 ) + (𝛷𝑡𝑝 +𝛷𝑓𝑛 ) ⋅ (𝛷𝑓𝑛 +𝛷𝑡𝑛 )
+ 1

)

= 𝜅𝜄

(44)

6.4. Modified Laplace/modified precision

The Laplace estimator is normalised using the following process: 
𝐿
(

𝑔(𝑡𝑝), 𝑔(𝑡𝑛), 𝑔(𝑓𝑝), 𝑔(𝑓𝑛)
)

=
𝑡𝑝
𝑃 + 1

𝑡𝑝
𝑃 + 𝑓𝑝

𝑁 + 2

=
𝛷𝑡𝑝 + 1

𝛷𝑡𝑝 +𝛷𝑓𝑝 + 2

= 𝐿𝜌

(45)

where both 𝛷𝑡𝑝  and 𝛷𝑓𝑝  have a range of [0, 1]. This result seems anal-
ogous to the normalisation results of previous metrics, but the Laplace 
estimator has constants in both the numerator and denominator. The 
effect of the constants causes the range of output for the metric to be 
[ 13 ,

2
3 ]. However, the aim for all metrics, for the purposes of this paper, 

is that the range is to be [0, 1]. Hence, the following additional steps 
9 
are followed: 

𝐿𝜌 =
𝛷𝑡𝑝 + 1

𝛷𝑡𝑝 +𝛷𝑓𝑝 + 2

∝

((

𝛷𝑡𝑝 + 1

𝛷𝑡𝑝 +𝛷𝑓𝑝 + 2

)

− 1
3

)

∕
( 2
3
− 1

3

)

=

(

𝛷𝑡𝑝 + 1

𝛷𝑡𝑝 +𝛷𝑓𝑝 + 2

)

⋅ 3

=
3 ⋅𝛷𝑡𝑝 + 3

𝛷𝑡𝑝 +𝛷𝑓𝑝 + 2
− 1

= 𝐿𝜄

(46)

6.5. Modified Matthew’s correlation coefficient

This section proposes a modified version of MCC, which has been 
made more robust to CI through normalisation. This is accomplished 
through the normalisation process of dividing 𝑡𝑝 and 𝑓𝑛 by 𝑃  and 𝑡𝑛
and 𝑓𝑝 by 𝑁 as shown below: 
MCC

(

𝑔(𝑡𝑝), 𝑔(𝑡𝑛), 𝑔(𝑓𝑝), 𝑔(𝑓𝑛)
)

= 1
2
⋅

⎛

⎜

⎜

⎜

⎝

𝑡𝑝
𝑃 ⋅ 𝑡𝑛

𝑁 − 𝑓𝑝
𝑁 ⋅ 𝑓𝑛

𝑃
√

( 𝑡𝑝𝑃 + 𝑓𝑝
𝑁 )( 𝑡𝑝𝑃 + 𝑓𝑛

𝑃 )( 𝑡𝑛𝑁 + 𝑓𝑝
𝑁 )( 𝑡𝑛𝑁 + 𝑓𝑛

𝑃 )
+ 1

⎞

⎟

⎟

⎟

⎠

= 1
2
⋅

⎛

⎜

⎜

⎜

⎝

𝛷𝑡𝑝 ⋅𝛷𝑡𝑛 −𝛷𝑓𝑝 ⋅𝛷𝑓𝑛
√

(𝛷𝑡𝑝 +𝛷𝑓𝑝 )(𝛷𝑡𝑝 +𝛷𝑓𝑛 )(𝛷𝑡𝑛 +𝛷𝑓𝑝 )(𝛷𝑡𝑛 +𝛷𝑓𝑛 )
+ 1

⎞

⎟

⎟

⎟

⎠

= MCC𝜄

(47)

6.6. Modified optimised precision

This section proposes a modified version of optimised ‘‘precision’’. 
The normalisation results in the accuracy in the first term becoming 
balanced accuracy, with the final metric given as 
𝑂𝑃𝜄 = 𝐵 − 𝑅𝐼

=
𝛷𝑡𝑝 +𝛷𝑡𝑛

2
−

|𝛷𝑡𝑛 −𝛷𝑡𝑝 |

𝛷𝑡𝑛 +𝛷𝑡𝑝

∝ 1
2
⋅

(

𝛷𝑡𝑝 +𝛷𝑡𝑛

2
−

|𝛷𝑡𝑛 −𝛷𝑡𝑝 |

𝛷𝑡𝑛 +𝛷𝑡𝑝
+ 1

)

(48)

6.7. Modified Matthew’s correlation coefficient-F1 metric

The next proposed metric is a normalised version of the MCC-F1
metric. However, for this metric the process is slightly simpler; since 
the constituent parts of the MCC-F1 metric are the MCC metric and the 
F1 metric, the existing normalised versions from Eqs. (47) and (43) are 
used to normalise the MCC-F1 metric. The modification of the derived 
single-threshold version of the metric in Eq.  (37) results in 
MCC-F1

(

𝑔(𝑡𝑝), 𝑔(𝑡𝑛), 𝑔(𝑓𝑝), 𝑔(𝑓𝑛)
)

= 1 −

√

(F𝜄 − 1)2 + (MCC𝜄 − 1)2
√

2
= MCC-F𝜄

(49)

6.8. Area under precision recall curve

A PR curve can be generated and analysed to evaluate the perfor-
mance of a classifier or rule induction system. One of the first in-depth 
formalisations of PR curve analysis was published by Buckland and 
Gey [75]. A PR curve demonstrates the trade-offs made by a classifier to 
optimise its performance on a binary classification problem by plotting 
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Fig. 2. Trigonometric properties of a single point PR curve.

the precision (PPV) against the recall (TPR) for different threshold 
values.

A PR graph has a range and domain [0, 1], with four salient (𝑥, 𝑦)
points on the graph. The following list outlines what points on the PR 
curve in the vicinity of different 𝑥 and 𝑦 values (denoted as ∼ (𝑥, 𝑦)) 
indicate

• ∼ (0, 0) represents a classifier which was unable to correctly 
classify any instances of the target class.

• ∼ (0, 1) represents a classifier which classifies very few instances 
of the target class, but those which are classified are correct.

• ∼ (1, 0) represents a classifier which classifies all instances of the 
target class correctly, but at the same time none of them. This 
nonsensical point is more of a parallel to a system which classifies 
all instances as the target class.

• ∼ (1, 1) is a perfect classifier.

Fig.  2 represents a generic PR plot of the performance of one 
classifier. This hypothetical classifier has a precision of 0.75 and a recall 
of 0.7. As with the ROC curve, the AUC of the PR curve can be estimated 
by decomposing the plot into one rectangle and two triangles. The total 
AUC is defined as the sum of the main rectangular body (□) and the 
two triangles (▵1 and ▵2), i.e. 𝐴̇𝑃𝑅 = 𝐴̇□ + 𝐴▵1

+ 𝐴▵2
.

In the same way that the FMI metric from Section 5.9 is the 
geometric mean between the precision and recall metrics, the area 
under a single-threshold PR curve is calculated as the arithmetic mean 
between the precision and recall metrics. The simplification from the 
area calculation to the arithmetic mean is shown below: 
𝐴̇𝑃𝑅 =

(

𝐴̇□ + 𝐴̇▵1 + 𝐴̇▵2
)

=
(

𝑙 ⋅ 𝑏 + 1
2
⋅ 𝑏1 ⋅ ℎ1 +

1
2
⋅ 𝑏2 ⋅ ℎ2

)

=
(

𝜌𝑡𝑝 ⋅𝛷𝑡𝑝 +
1
2
⋅𝛷𝑡𝑝 ⋅ (1 − 𝜌𝑡𝑝 ) +

1
2
⋅ (1 −𝛷𝑡𝑝 ) ⋅ 𝜌𝑡𝑝

)

=
𝜌𝑡𝑝 +𝛷𝑡𝑝

2

(50)

6.9. Precision recall quadratic mean

The quadratic mean is a case of the more general power mean 
with specifically two components. This section proposes that the effect 
of CI on the final of the four popular means be evaluated. As with 
Section 6.8, this proposed metric is not a normalised version of an 
10 
existing metric, but is an averaging technique applied to a popular 
metric combination (precision and recall).

The rates are combined into the quadratic mean as follows: 

𝑄𝑃𝑅 =

√

𝛷𝑡𝑝 + 𝜌𝑡𝑝
2

(51)

6.10. Sensitivity specificity harmonic mean

Similar to how the 𝐹1 measure is the harmonic mean between 
precision and recall, this paper proposes testing the harmonic mean of 
another popular combination rates, namely sensitivity and specificity. 
The harmonic mean between sensitivity (TPR) and specificity (TNR) is 
not a normalised version of an existing metric, but is a newly proposed 
metric. There are no examples of this combination in the reviewed 
literature. The sensitivity and specificity (TPR and TNR) are already 
combined using the arithmetic mean in the balanced accuracy metric 
presented in Section 5.3. The harmonic counterpart is shown below: 

𝐻𝑆𝑆 = 2
1

𝛷𝑡𝑝
+ 1

𝛷𝑡𝑛

(52)

6.11. Sensitivity specificity quadratic mean

As in Section 6.9, this section defines the fourth average using the 
popular combination of 𝛷𝑡𝑝  and 𝛷𝑡𝑛  as a potential metric. The quadratic 
mean between sensitivity and specificity is calculated as follows: 

𝑄𝑆𝑆 =

√

𝛷𝑡𝑝 +𝛷𝑡𝑛

2
(53)

7. Metric behavioural analysis empirical process

This section outlines how the existing and proposed metrics pre-
sented in Sections 5 and 6 are analysed under different conditions of CI. 
The section also proposes a performance metric classification schema 
to simplify the description and explanation of the behaviour of a metric 
under CI.

7.1. Empirical process

In order to compare how robust each metric is to CI, the following 
procedure was applied. Firstly, levels of CI was defined, i.e. (𝑃 ∶ 𝑁), 
where 𝑃  represents the number of instances in the target class and 
𝑁 the number of instances in the non-target class. For this empirical 
analysis, the levels of CI tested were (1 ∶ 1), (1 ∶ 2), (1 ∶ 100) and 
(1∶1000). Then input axes were constructed for different possible values 
of 𝑡𝑝 ∈ {0,… , 𝑃 } and 𝑓𝑝 ∈ {0,… , 𝑁}. The two axes were used to create 
a meshgrid of 10000 points, on which each metric was evaluated to 
simulate all possible configurations of the confusion matrix.

S’SA was used to calculate the importance of each input (𝑡𝑝 and 
𝑓𝑝) by the process described in Section 3.3. S’SA was used to calculate 
first-order sensitivity indices on 216 SSs, to ensure a sufficient number 
of samples for the Monte Carlo process. The first-order sensitivity 
indices were summarised as importance score means (𝜇𝐼𝑡𝑝 ,(𝑃∶𝑁)

 and 
𝜇𝐼𝑓𝑝,(𝑃∶𝑁)

) and standard deviations (𝜎𝐼𝑡𝑝 ,(𝑃∶𝑁)
 and 𝜎𝐼𝑓𝑝,(𝑃∶𝑁)

). The average 
importance scores for each input for each CI was compared to the 
case of (1 ∶ 1) with the Welch’s t-test [76]. The 𝑝-values from the 
t-tests (𝑝𝑡𝑝(𝑃∶𝑁) and 𝑝𝑓𝑝(𝑃∶𝑁)) were combined with the method from 
Stouffer et al. (𝑆𝑆 ) [77,78], as outlined by Heard [79]. The 𝑝-values 
are used to compare the null hypothesis (𝐻0), which states that there is 
no statistically significant difference in the average importance scores, 
against the alternative hypothesis (𝐻𝑎), which states that there is a 
statistically significant difference in the average importance scores.
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The procedure for statistical comparison is outlined in Algorithms 1 
and 2.

Algorithm 1 Statistical comparison of importance scores
  Input: metric (𝑓 )
  Output: 𝑝-values 
1: Let comparison base case be importance scores of (1 ∶ 1) imbalance 

2: for imbalance levels (𝑃 ∶𝑁) ∈ {(1 ∶ 2), (1 ∶ 100), (1 ∶ 1000)} do 
3: Calculate importance score values according to Algorithm 2
4: Let 𝑝𝑡𝑝 ,(𝑃∶𝑁) = t-test(𝜇𝐼𝑡𝑝 ,(1∶1) ± 𝜎𝐼𝑡𝑝 ,(1∶1) ;𝜇𝐼𝑡𝑝 ,(𝑃∶𝑁)

± 𝜎𝐼𝑡𝑝 ,(𝑃∶𝑁)
)

5: Let 𝑝𝑓𝑝 ,(𝑃∶𝑁) = t-test(𝜇𝐼𝑓𝑝,(1∶1) ± 𝜎𝐼𝑓𝑝,(1∶1) ;𝜇𝐼𝑓𝑝,(𝑃∶𝑁)
± 𝜎𝐼𝑓𝑝,(𝑃∶𝑁)

)
6: Combine 𝑝-values as 𝑝(𝑃∶𝑁) = 𝑆𝑆 (𝑝𝑡𝑝 , 𝑝𝑓𝑝 )
7: Add 𝑝(𝑃∶𝑁) to list of p-values, 𝒑
8: end for
9: Return 𝒑

Algorithm 2 S’SA for a metric under CI
  Input: metric (𝑓 ), level of CI (𝑃 ∶𝑁)
  Output: Importance scores (𝑆1 indices from 
S’SA) 
1: Define the domain for 𝑡𝑝 as  ⊆ [0, 𝑃 ]
2: Define the domain for 𝑓𝑝 as  ⊆ [0, 𝑁]
3: Sample SS from  =  ×
4: Evaluate  = 𝑓 (𝑥𝑖), ∀𝑥𝑖 ∈ 
5: Apply S’SA to ( , )
6: Return means and standard deviations for importance scores, i.e.

𝜇𝐼𝑡𝑝 ± 𝜎𝐼𝑡𝑝  and 𝜇𝐼𝑓𝑝 ± 𝜎𝐼𝑓𝑝

Additionally, metric behaviour is quantified through the use of 
contour plots. For each level of CI, the equally spaced points of 𝑡𝑝 ∈
{0,… , 𝑃 } and 𝑓𝑝 ∈ {0,…𝑁} were used to calculate the metric out-
put, 𝑓 (𝑡𝑝, 𝑓𝑝). Let 𝑦𝑖,(𝑃∶𝑁) represent the metric output for input point 
(𝑡𝑝, 𝑓𝑝)𝑖 ∈ {0,… , 𝑃 } × {0,… , 𝑁} from (𝑃∶𝑁) imbalanced data. The 
total deviation of the metric under (𝑃∶𝑁) imbalance in comparison to 
(1∶1) imbalance is quantified by the sum of the absolute value of the 
difference between each point, as
𝛴(𝑃∶𝑁) =

∑

(𝑡𝑝 ,𝑓𝑝)𝑖

|𝑦𝑖,(1∶1) − 𝑦𝑖,(𝑃∶𝑁)|.

The greater the value of 𝛴(𝑃∶𝑁), the less robust the metric is to (𝑃∶𝑁)
imbalance.

7.2. Metric behaviour classification

After completion of the procedure in Section 7.1, the results from 
the S’SA importance scores statistical comparison and the contour plot 
deviations are used to classify metrics.
S’SA importance score classification. The classification based on S’SA 
importance scores are made by comparing the importance scores (𝐼𝑡𝑝
and 𝐼𝑓𝑝 ) for (1 ∶ 1) CI against the other levels of CI. Since metric 
behaviour on a (1∶1) balanced dataset represents the most trustworthy 
behaviour of a metric, metric behaviour of other levels of CI are 
compared against this base case. The average importance scores of each 
level of CI are used to calculate a 𝑝-value, 𝑝(1∶𝑖), which is used to accept 
or reject 𝐻0. When (𝑝(1∶𝑖) < 0.05) it indicates that 𝐻0 is rejected, i.e.
there is a statistically significant difference in the average importance 
scores. Rejection of 𝐻0 indicates that a metric is not robust to that given 
level of CI, since the behaviour of the metric deviates from behaviour of 
the balanced case. Using this information, the S’SA importance scores 
are used to classify metrics into one of five types as outlined in Table 
3.
11 
Table 3
Types of metrics based on S’SA scores.
 Type Description  
 Type 1 𝑝(1∶𝑖) < 0.05 ∀ 𝑖 ∈ {2, 10, 100, 1000} 
 Type 2 𝑝(1∶𝑖) < 0.05 ∀ 𝑖 ∈ {10, 100, 1000}  
 Type 3 𝑝(1∶𝑖) < 0.05 ∀ 𝑖 ∈ {100, 1000}  
 Type 4 𝑝(1∶𝑖) < 0.05 ∀ 𝑖 ∈ {1000}  
 Type 5 𝑝(1∶𝑖) < 0.05 ∀ 𝑖 ∈ {}  

Table 4
Types of metrics based on contour plots.
 Type Description  
 Type 1 𝛴(1∶𝑖) > 0 ∀ 𝑖 ∈ {2, 10, 100, 1000} 
 Type 2 𝛴(1∶𝑖) > 0 ∀ 𝑖 ∈ {10, 100, 1000}  
 Type 3 𝛴(1∶𝑖) > 0 ∀ 𝑖 ∈ {100, 1000}  
 Type 4 𝛴(1∶𝑖) > 0 ∀ 𝑖 ∈ {1000}  
 Type 5 𝛴(1∶𝑖) > 0 ∀ 𝑖 ∈ {}  

Table 5
𝑝-values for importance score comparisons.
 Metric 𝑝(1∶2) 𝑝(1∶10) 𝑝(1∶100) 𝑝(1∶1000) 
 𝐴 0.0000 0.0000 0.0000 0.0000 
 𝜈 0.0000 0.0000 0.0000 0.0000 
 𝐵 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎  
 𝐹1 0.0000 0.0000 0.0000 0.0000 
 𝜅 0.0000 0.0000 0.0000 0.0000 
 𝐿 0.0000 0.0000 0.0000 0.0000 
 MCC 0.0000 0.0000 0.0000 0.0000 
 MK 0.0000 0.0000 0.0000 0.0000 
 FMI 0.0000 0.0000 0.0000 0.0000 
 OP 0.0000 0.0000 0.0000 0.0000 
 MCC-F1 0.0000 0.0000 0.0000 0.0000 
 𝐺𝑆𝑆 𝟎.𝟗𝟗𝟏𝟑 𝟎.𝟗𝟓𝟓𝟎 𝟎.𝟖𝟕𝟐𝟎 𝟎.𝟕𝟗𝟖𝟗  
 𝐼𝐵𝐴 𝟎.𝟗𝟗𝟎𝟏 𝟎.𝟓𝟏𝟏𝟑 𝟎.𝟗𝟗𝟔𝟗 𝟎.𝟗𝟓𝟒𝟎  
 𝜈𝜄 𝟎.𝟗𝟗𝟖𝟖 𝟏.𝟎𝟎𝟎𝟎 𝟎.𝟗𝟗𝟕𝟑 𝟎.𝟗𝟗𝟖𝟎  
 𝐹𝜄 𝟎.𝟗𝟖𝟑𝟗 𝟎.𝟗𝟖𝟔𝟕 𝟎.𝟗𝟖𝟑𝟖 𝟎.𝟗𝟕𝟎𝟎  
 𝜅𝜄 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎  
 𝐿𝜄 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎 𝟏.𝟎𝟎𝟎𝟎  
 MCC𝜄 𝟎.𝟗𝟗𝟒𝟖 𝟎.𝟗𝟐𝟔𝟐 𝟎.𝟗𝟗𝟗𝟒 𝟎.𝟗𝟗𝟎𝟐  
 𝑂𝑃𝜄 0.0000 0.0000 0.0000 0.0000 
 MCC-F𝜄 𝟎.𝟗𝟗𝟔𝟐 𝟎.𝟗𝟖𝟕𝟓 𝟎.𝟗𝟗𝟗𝟗 𝟎.𝟗𝟗𝟓𝟐  
 𝐴𝑃𝑅 0.0000 0.0000 0.0000 0.0000 
 𝑄𝑃𝑅 0.0000 0.0000 0.0000 0.0000 
 𝐻𝑆𝑆 𝟎.𝟗𝟑𝟓𝟗 𝟎.𝟗𝟗𝟒𝟐 𝟎.𝟔𝟒𝟐𝟏 𝟎.𝟗𝟗𝟗𝟓  
 𝑄𝑆𝑆 𝟎.𝟗𝟖𝟓𝟖 𝟎.𝟗𝟖𝟐𝟖 𝟎.𝟗𝟕𝟕𝟗 𝟎.𝟗𝟗𝟕𝟑  

Contour plot deviation. The contour plots for the different levels of CI of 
a metric are also used to classify the behaviour of the metric. Contour 
plots which maintain uniform shapes and contours even under different 
distributions of target feature values are seen as more robust to CI. The 
five types of contour plot-based classes are summarised in Table  4.

8. Results and discussion

This section presents the results obtained from the described anal-
ysis method in Section 7. Detailed results are given in Appendix  A 
(Tables  A.12, A.13, A.14, A.15 and A.16). These tables contain the 
S’SA importance scores for 𝑡𝑝 and 𝑓𝑝 for imbalances of (1:1), (1:2), 
(1:10), (1:100) and (1:1000) respectively. The 𝑝-values which compare 
the importance scores are given in Table  5. Table  6 classifies metrics 
according to the schema defined in Table  3.

The deviations between contour plots are presented in Table  7. Ta-
ble  8 classifies each metric according to the categories of contour plots 
presented in Table  4. The contour plots used to make the classifications 
are given in Appendix  B as Figs.  B.3 to B.26. The visual representations 
of the contour plots provide additional insight into how the behaviour 
of metrics changes with increasingly extreme CI.

Table  6 shows that all evaluated metrics are classified as either Type 
1 or Type 5. Type 1 metrics are greatly affected by CI as the ratios of 
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Table 6
S’SA-based classification of metric behaviour.
 Type Metrics  
 1 𝐴, 𝜈, 𝐹1, 𝜅, 𝐿, MCC, MK, FMI, OP, MCC-𝐹1, 𝐴𝑃𝑅, 𝑄𝑃𝑅  
 2  
 3  
 4  
 5 𝐵, 𝐺𝑆𝑆 , IBA, 𝜈𝜄, 𝐹𝜄, 𝜅𝜄, 𝐿𝜄, MCC𝜄, 𝑂𝑃𝜄, MCC-𝐹𝜄, 𝐻𝑆𝑆 , 𝑄𝑆𝑆 

Table 7
Contour plot cumulative deviation scores.
 Metric 𝛴(1∶2) 𝛴(1∶10) 𝛴(1∶100) 𝛴(1∶1000)  
 𝐴 561.11 1377.27 1650.0 1679.97 
 𝜈 716.14 2253.96 3211.02 3393.73 
 𝐵 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝐹1 777.16 2791.69 4320.15 4652.12 
 𝜅 214.03 971.47 1516.24 1644.29 
 𝐿 1281.47 3515.86 4680.3 4878.56 
 MCC 100.73 573.63 1271.53 1594.01 
 MK 223.25 1023.3 1751.6 1903.28 
 FMI 713.56 2391.24 3917.76 4516.34 
 OP 280.56 688.64 825.0 839.99  
 MCC-F1 407.98 1599.66 2603.22 2851.58 
 𝐺𝑆𝑆 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝐼𝐵𝐴 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝜈𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝐹𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝜅𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝐿𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 MCC𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝑂𝑃𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 MCC-F𝜄 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝐴𝑃𝑅 647.22 1763.79 2340.18 2437.69 
 𝑄𝑃𝑅 505.56 1422.57 1924.43 2013.31 
 𝐻𝑆𝑆 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  
 𝑄𝑆𝑆 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎 𝟎.𝟎  

Table 8
Contour plot classification of metric behaviour.
 Type Metrics  
 1 𝐴, 𝜈, 𝐹1, 𝜅, 𝐿, MCC, MK, FMI, OP, MCC-𝐹1, 𝐴𝑃𝑅, 𝑄𝑃𝑅  
 2  
 3  
 4  
 5 𝐵, 𝐺𝑆𝑆 , IBA, 𝜈𝜄, 𝐹𝜄, 𝜅𝜄, 𝐿𝜄, MCC𝜄, 𝑂𝑃𝜄, MCC-𝐹𝜄, 𝐻𝑆𝑆 , 𝑄𝑆𝑆 

importance scores are dissimilar for all levels of CI. On the contrary, 
Type 5 metrics maintain equivalent ratios for all levels of CI, which 
indicates robustness to CI. There is a clear trend that the modified 
metrics proposed in Section 6, as well as metrics which average the 
sensitivity and specificity, are Type 5. The metrics popular in existing 
literature from Section 5 are Type 1.

An analysis of Table  8 reveals similar trends to the trends in Table 
6. All the analysed metrics are either Type 1 or Type 5. The newly 
proposed metrics, as well as the averages between sensitivity and 
specificity, are all Type 5.

It is clear that there are two dominant cases of robustness to CI: 
metrics which are robust, and metrics which are not. Robust metrics 
include the metrics which were normalised using the method proposed 
in Section 4, and metrics which average the TPR and TNR using one of 
the four types of means. The majority of metrics which are popularly 
used in literature are not robust to CI.

9. Metric behaviour on real-world datasets

This section bolsters the results seen in the importance score and 
contour plot evaluation of Section 8. All existing and proposed metrics 
presented in Sections 5 and 6 were evaluated on six real-world anomaly 
detection datasets. The evaluation on these real-world datasets was 
performed to show the discrepancy in the expected value of the results 
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Table 9
Real-world dataset characteristics.
 Name Instances Attributes Imbalance Reference 
 𝐷1 284807 30 (1∶577.88) [80]  
 𝐷2 7200 21 (1∶12.48) [81]  
 𝐷3 202599 39 (1∶43.56) [82]  
 𝐷4 41188 62 (1∶7.87) [83]  
 𝐷5 299285 500 (1∶15.12) [84]  
 𝐷6 37136 500 (1∶1) [84]  

Table 10
LR Hyperparameters.
 Hyperparameter Value  
 Optimiser L-BFGS 
 Iterations 100  
 Regularisation 𝐿2  
 Stopping tolerance 10−4  
 Regularisation strength 1.0  

(shown by the robust metrics denoted with the subscript 𝜄), and the 
non-robust metrics (i.e. many of the metrics popular in literature).

The datasets included credit card fraud detection [80], thyroid 
disease detection [81], celebrity attribute classification [82], bank 
marketing success prediction [83], and income levels from census 
data [84]. All six datasets were preprocessed as by Pang et al. in [85], 
where missing values were imputed by the mean and categorical vari-
ables were one-hot encoded. The dataset files are available from Pang 
et al. on GitHub.2 Note that the sixth dataset, 𝐷6, is simply 𝐷5 after ran-
domly undersampling the majority class to achieve (1∶1) class balance. 
Dataset 𝐷6 was created to compare metrics under balanced conditions.

Table  9 outlines the dataset characteristics, i.e. the total number of 
instances, the dimensionality of the data, the level of class imbalance, 
and the source of the data.

A simple ML model was trained on each of the six datasets. The 
purpose of this experiment was not to find the optimal ML model for 
each problem, but to see how the interpretation of the aptness of each 
model changes as different metrics are used. The ML approach selected 
for this task was LR due to its simplicity, ease of use, and relevance 
to binary classification. LR can be made more complex through the 
use of basis functions, but this was not explored. For a history and 
background of LR, the reader is referred to [86]. The implementation 
of LR used was from the popular Python package scikit-learn,3 
optimised with the limited memory Broyden-Fletcher-Goldfarb-Shanno 
algorithm (L-BFGS) [87], and used with the hyperparameters specified 
in Table  10. In order to split the dataset into train and test sets, 
stratified k-fold cross-validation was used. Due to the class imbalance, 
stratified sampling was used to ensure that the proportions of each class 
remained consistent across all train and test sets. Each dataset was split 
into 𝑘 = 5 folds, which resulted in a 80%∕20% train-test split. For each 
metric, the average values over each of the six tests sets were calculated 
and are reported in Table  11

The real-world results echo the results seen in Section 8, in which 
it is clear that many existing metrics deviate from the expected be-
haviour when applied to imbalanced learning. For example, accuracy 
(𝐴) clearly overestimates the aptness of the models on all datasets in 
comparison to balanced accuracy (𝐵). Similarly, even metrics which 
are heralded as suitable for imbalanced learning (e.g. 𝐹1) do not show 
consistent results. Table  11 shows that, other than for the thyroid 
dataset, the values for 𝐹1 do not match those of 𝐹𝜄. Since 𝐹𝜄 was 
shown to be insensitive to class imbalance, 𝐹𝜄 represents the expected 
behaviour (i.e. 𝐹𝜄 behaves the same for all levels of class imbalance). If 

2 https://github.com/GuansongPang/ADRepository-Anomaly-detection-
datasets/.

3 https://scikit-learn.org/stable/.

https://github.com/GuansongPang/ADRepository-Anomaly-detection-datasets/
https://github.com/GuansongPang/ADRepository-Anomaly-detection-datasets/
https://scikit-learn.org/stable/
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Table 11
Real world dataset.
 Metric 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6  
 𝐴 0.9991 0.9383 0.9781 0.9096 0.9529 0.8713 
 𝜈 0.5512 0.1778 0.1111 0.3274 0.3410 0.7766 
 𝐵 0.8058 0.5895 0.5598 0.6831 0.6914 0.8713 
 𝐹1 0.7096 0.3002 0.1999 0.4933 0.5086 0.8742 
 𝜅 0.8546 0.6417 0.5967 0.7237 0.7431 0.8713 
 𝐿 0.8366 0.8994 0.5584 0.6683 0.7210 0.8543 
 MCC 0.8594 0.6972 0.6269 0.7335 0.7555 0.8717 
 MK 0.9227 0.9392 0.7696 0.7977 0.8411 0.8721 
 FMI 0.7192 0.4089 0.2608 0.5112 0.5323 0.8745 
 OP 0.8788 0.6208 0.5978 0.7408 0.7605 0.9220 
 MCC-F1 0.7719 0.4608 0.3758 0.5951 0.6119 0.8730 
 𝐺𝑆𝑆 0.7817 0.4211 0.3484 0.6173 0.6236 0.8709 
 𝐼𝐵𝐴 0.3761 0.0339 0.0152 0.1584 0.1567 0.7944 
 𝜈𝜄 0.6118 0.1796 0.1216 0.3814 0.3889 0.7766 
 𝐹𝜄 0.7583 0.3027 0.2167 0.5521 0.5600 0.8742 
 𝜅𝜄 0.8058 0.5895 0.5598 0.6831 0.6914 0.8713 
 𝐿𝜄 0.8510 0.6226 0.5845 0.7274 0.7389 0.8655 
 MCC𝜄 0.8319 0.6552 0.6239 0.7257 0.7386 0.8717 
 𝑂𝑃𝜄 0.7822 0.4463 0.3887 0.6275 0.6298 0.9220 
 MCC-F𝜄 0.7918 0.4499 0.3856 0.6286 0.6381 0.8730 
 𝐴𝑃𝑅 0.7290 0.5599 0.3404 0.5298 0.5570 0.8747 
 𝑄𝑃𝑅 0.8536 0.7478 0.5832 0.7278 0.7463 0.9353 
 𝐻𝑆𝑆 0.7584 0.3029 0.2170 0.5579 0.5625 0.8706 
 𝑄𝑆𝑆 0.8976 0.7677 0.7482 0.8265 0.8315 0.9334 

𝐹1 were also insensitive to class imbalance it is expected that 𝐹1 would 
show similar results to 𝐹𝜄, but this is not the case.

The shortcomings of existing metrics is further demonstrated by the 
results on 𝐷6. The results for the balanced census dataset (𝐷6) show 
that the behaviour of existing metrics do match the behaviour of the 
modified metrics. For example, the accuracy (𝐴) and balanced accuracy 
(𝐵) are both 0.8713 on 𝐷6. Similarly, both 𝐹1 and 𝐹𝜄 are the same at 
0.8742.

10. Conclusion and future work

This paper provided an extensive review of the behaviour of perfor-
mance evaluation metrics for classification problems under the influ-
ence of different levels of CI. Multiple metrics from existing literature 
were reviewed, with in-depth histories and justifications for the pro-
posals of these metrics presented. A normalisation-based technique for 
the creation of robust metrics from existing metrics was proposed, and 
used to modify the reviewed metrics. Additionally, all reviewed and 
proposed metrics were analysed under different levels of CI using Sobol’ 
sensitivity analysis (S’SA).

To the knowledge of the authors, this paper performed the first 
extensive variance-based global SA of classification metrics with re-
gards to CI. This paper found that the majority of existing metrics were 
sensitive to CI. This paper also found that the proposed normalisation 
technique resulted in metrics which are highly robust to CI.

Overall, this paper shed light on the issue of CI in classification 
problems, which has plagued researchers in fields like ML and diag-
nostics for decades. This paper also provided a potential solution to 
many problems posed by CI through the creation of new, more robust 
metrics.

This paper answered many questions about how binary classifica-
tion metrics behave under different levels of CI. Future studies on this 
topic can include the sensitivity of multi-class classification metrics, the 
sensitivity of metrics when used in conjunction with a specific learning 
algorithm (e.g. neural networks), and the sensitivity of metrics when 
used on real-world datasets.
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Table A.12
Table of S’SA results 1:1 class imbalance.
 Metric 1:1 imbalance
 𝑡𝑝 𝑓𝑝 𝑝  
 𝐴 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝜈 0.10 ± 0.00 0.86 ± 0.01 (1.00 ∶ 8.19)  
 𝐵 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐹1 0.08 ± 0.00 0.91 ± 0.01 (1.00 ∶ 11.78) 
 𝜅 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐿 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  
 MCC 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 MK 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  
 FMI 0.09 ± 0.00 0.90 ± 0.01 (1.00 ∶ 9.67)  
 OP 0.39 ± 0.01 0.39 ± 0.01 (1.00 ∶ 1.00)  
 MCC-F1 0.24 ± 0.01 0.76 ± 0.01 (1.00 ∶ 3.20)  
 𝐺𝑆𝑆 0.47 ± 0.01 0.47 ± 0.01 (1.00 ∶ 1.00)  
 𝐼𝐵𝐴 0.19 ± 0.01 0.68 ± 0.01 (1.00 ∶ 3.61)  
 𝜈𝜄 0.10 ± 0.00 0.86 ± 0.01 (1.00 ∶ 8.19)  
 𝐹𝜄 0.08 ± 0.00 0.91 ± 0.01 (1.00 ∶ 11.78) 
 𝜅𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐿𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 MCC𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝑂𝑃𝜄 0.39 ± 0.01 0.39 ± 0.01 (1.00 ∶ 1.00)  
 MCC-F𝜄 0.24 ± 0.01 0.76 ± 0.01 (1.00 ∶ 3.20)  
 𝐴𝑃𝑅 0.12 ± 0.00 0.87 ± 0.01 (1.00 ∶ 7.28)  
 𝑄𝑃𝑅 0.10 ± 0.00 0.89 ± 0.01 (1.00 ∶ 9.02)  
 𝐻𝑆𝑆 0.44 ± 0.01 0.44 ± 0.01 (1.00 ∶ 1.00)  
 𝑄𝑆𝑆 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  

Table A.13
Table of S’SA results 1:2 class imbalance.
 Metric 1:2 imbalance
 𝑡𝑝 𝑓𝑝 𝑝  
 𝐴 0.80 ± 0.01 0.20 ± 0.00 (1.00 ∶ 0.25)  
 𝜈 0.22 ± 0.01 0.70 ± 0.01 (1.00 ∶ 3.18)  
 𝐵 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐹1 0.18 ± 0.01 0.79 ± 0.01 (1.00 ∶ 4.42)  
 𝜅 0.51 ± 0.01 0.49 ± 0.01 (1.00 ∶ 0.97)  
 𝐿 0.60 ± 0.01 0.37 ± 0.01 (1.00 ∶ 0.62)  
 MCC 0.54 ± 0.01 0.46 ± 0.01 (1.00 ∶ 0.86)  
 MK 0.58 ± 0.01 0.40 ± 0.01 (1.00 ∶ 0.69)  
 FMI 0.16 ± 0.01 0.82 ± 0.01 (1.00 ∶ 5.16)  
 OP 0.52 ± 0.01 0.27 ± 0.01 (1.00 ∶ 0.51)  
 MCC-F1 0.32 ± 0.01 0.67 ± 0.01 (1.00 ∶ 2.09)  
 𝐺𝑆𝑆 0.47 ± 0.01 0.47 ± 0.01 (1.00 ∶ 1.00)  
 𝐼𝐵𝐴 0.19 ± 0.01 0.68 ± 0.01 (1.00 ∶ 3.61)  
 𝜈𝜄 0.10 ± 0.00 0.86 ± 0.01 (1.00 ∶ 8.19)  
 𝐹𝜄 0.08 ± 0.00 0.91 ± 0.01 (1.00 ∶ 11.78) 
 𝜅𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐿𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 MCC𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝑂𝑃𝜄 0.39 ± 0.01 0.39 ± 0.01 (1.00 ∶ 1.00)  
 MCC-F𝜄 0.24 ± 0.01 0.76 ± 0.01 (1.00 ∶ 3.20)  
 𝐴𝑃𝑅 0.15 ± 0.00 0.84 ± 0.01 (1.00 ∶ 5.74)  
 𝑄𝑃𝑅 0.11 ± 0.00 0.88 ± 0.01 (1.00 ∶ 7.75)  
 𝐻𝑆𝑆 0.44 ± 0.01 0.44 ± 0.01 (1.00 ∶ 1.00)  
 𝑄𝑆𝑆 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  
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Table A.14
Table of S’SA results 1:10 class imbalance.
 Metric 1:10 imbalance
 𝑡𝑝 𝑓𝑝 𝑝  
 𝐴 0.99 ± 0.01 0.01 ± 0.00 (1.00 ∶ 0.01)  
 𝜈 0.52 ± 0.01 0.30 ± 0.01 (1.00 ∶ 0.57)  
 𝐵 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐹1 0.51 ± 0.01 0.38 ± 0.01 (1.00 ∶ 0.75)  
 𝜅 0.61 ± 0.01 0.32 ± 0.01 (1.00 ∶ 0.53)  
 𝐿 0.77 ± 0.02 0.16 ± 0.01 (1.00 ∶ 0.21)  
 MCC 0.61 ± 0.01 0.38 ± 0.01 (1.00 ∶ 0.62)  
 MK 0.75 ± 0.01 0.22 ± 0.01 (1.00 ∶ 0.30)  
 FMI 0.34 ± 0.01 0.59 ± 0.01 (1.00 ∶ 1.73)  
 OP 0.68 ± 0.01 0.13 ± 0.01 (1.00 ∶ 0.19)  
 MCC-F1 0.55 ± 0.01 0.40 ± 0.01 (1.00 ∶ 0.73)  
 𝐺𝑆𝑆 0.47 ± 0.01 0.47 ± 0.01 (1.00 ∶ 1.00)  
 𝐼𝐵𝐴 0.19 ± 0.01 0.68 ± 0.01 (1.00 ∶ 3.61)  
 𝜈𝜄 0.10 ± 0.00 0.86 ± 0.01 (1.00 ∶ 8.19)  
 𝐹𝜄 0.08 ± 0.00 0.91 ± 0.01 (1.00 ∶ 11.78) 
 𝜅𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐿𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 MCC𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝑂𝑃𝜄 0.39 ± 0.01 0.39 ± 0.01 (1.00 ∶ 1.00)  
 MCC-F𝜄 0.24 ± 0.01 0.76 ± 0.01 (1.00 ∶ 3.20)  
 𝐴𝑃𝑅 0.14 ± 0.01 0.85 ± 0.01 (1.00 ∶ 6.20)  
 𝑄𝑃𝑅 0.09 ± 0.00 0.91 ± 0.01 (1.00 ∶ 9.96)  
 𝐻𝑆𝑆 0.44 ± 0.01 0.44 ± 0.01 (1.00 ∶ 1.00)  
 𝑄𝑆𝑆 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  

Table A.15
Table of S’SA results 1:100 class imbalance.
 Metric 1:100 imbalance
 𝑡𝑝 𝑓𝑝 𝑝  
 𝐴 1.00 ± 0.01 0.00 ± 0.00 (1.00 ∶ 0.00)  
 𝜈 0.70 ± 0.04 0.06 ± 0.01 (1.00 ∶ 0.09)  
 𝐵 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐹1 0.73 ± 0.03 0.09 ± 0.01 (1.00 ∶ 0.12)  
 𝜅 0.74 ± 0.03 0.09 ± 0.01 (1.00 ∶ 0.12)  
 𝐿 0.84 ± 0.05 0.04 ± 0.00 (1.00 ∶ 0.04)  
 MCC 0.68 ± 0.01 0.27 ± 0.01 (1.00 ∶ 0.40)  
 MK 0.84 ± 0.03 0.07 ± 0.01 (1.00 ∶ 0.08)  
 FMI 0.53 ± 0.02 0.34 ± 0.01 (1.00 ∶ 0.65)  
 OP 0.73 ± 0.01 0.10 ± 0.01 (1.00 ∶ 0.14)  
 MCC-F1 0.72 ± 0.03 0.16 ± 0.01 (1.00 ∶ 0.22)  
 𝐺𝑆𝑆 0.47 ± 0.01 0.47 ± 0.01 (1.00 ∶ 1.00)  
 𝐼𝐵𝐴 0.19 ± 0.01 0.68 ± 0.01 (1.00 ∶ 3.61)  
 𝜈𝜄 0.10 ± 0.00 0.86 ± 0.01 (1.00 ∶ 8.19)  
 𝐹𝜄 0.08 ± 0.00 0.91 ± 0.01 (1.00 ∶ 11.78) 
 𝜅𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐿𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 MCC𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝑂𝑃𝜄 0.39 ± 0.01 0.39 ± 0.01 (1.00 ∶ 1.00)  
 MCC-F𝜄 0.24 ± 0.01 0.76 ± 0.01 (1.00 ∶ 3.20)  
 𝐴𝑃𝑅 0.04 ± 0.00 0.96 ± 0.01 (1.00 ∶ 25.12) 
 𝑄𝑃𝑅 0.02 ± 0.00 0.98 ± 0.01 (1.00 ∶ 45.16) 
 𝐻𝑆𝑆 0.44 ± 0.01 0.44 ± 0.01 (1.00 ∶ 1.00)  
 𝑄𝑆𝑆 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  

Appendix A. S’SA importance scores

This appendix provides the importance scores from the S’SA evalu-
ations in tabular form. The importance scores for the true positive and 
false positive (𝐼𝑡𝑝  and 𝐼𝑡𝑝 ) input variables are provided, as well as the 
ratio between these scores. Importance scores are calculated as outlined 
in Section 7.

Appendix B. Contour plots

This appendix provides the contour plots for each of the evaluated 
metrics under the different levels of CI. The contour plots are generated 
by plotting the ranges of function values at different coordinates.
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Table A.16
Table of S’SA results 1:1000 class imbalance.
 Metric 1:1000 imbalance
 𝑡𝑝 𝑓𝑝 𝑝  
 𝐴 1.00 ± 0.01 0.00 ± 0.00 (1.00 ∶ 0.00)  
 𝜈 0.74 ± 0.11 0.01 ± 0.00 (1.00 ∶ 0.02)  
 𝐵 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐹1 0.78 ± 0.09 0.02 ± 0.01 (1.00 ∶ 0.03)  
 𝜅 0.78 ± 0.09 0.02 ± 0.00 (1.00 ∶ 0.02)  
 𝐿 0.86 ± 0.15 0.01 ± 0.00 (1.00 ∶ 0.01)  
 MCC 0.70 ± 0.03 0.20 ± 0.01 (1.00 ∶ 0.28)  
 MK 0.86 ± 0.09 0.01 ± 0.00 (1.00 ∶ 0.02)  
 FMI 0.61 ± 0.05 0.21 ± 0.01 (1.00 ∶ 0.35)  
 OP 0.73 ± 0.01 0.10 ± 0.01 (1.00 ∶ 0.13)  
 MCC-F1 0.76 ± 0.07 0.08 ± 0.01 (1.00 ∶ 0.10)  
 𝐺𝑆𝑆 0.47 ± 0.01 0.47 ± 0.01 (1.00 ∶ 1.00)  
 𝐼𝐵𝐴 0.19 ± 0.01 0.68 ± 0.01 (1.00 ∶ 3.61)  
 𝜈𝜄 0.10 ± 0.00 0.86 ± 0.01 (1.00 ∶ 8.19)  
 𝐹𝜄 0.08 ± 0.00 0.91 ± 0.01 (1.00 ∶ 11.78)  
 𝜅𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝐿𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 MCC𝜄 0.50 ± 0.01 0.50 ± 0.01 (1.00 ∶ 1.00)  
 𝑂𝑃𝜄 0.39 ± 0.01 0.39 ± 0.01 (1.00 ∶ 1.00)  
 MCC-F𝜄 0.24 ± 0.01 0.76 ± 0.01 (1.00 ∶ 3.20)  
 𝐴𝑃𝑅 0.01 ± 0.00 0.99 ± 0.01 (1.00 ∶ 203.99) 
 𝑄𝑃𝑅 0.00 ± 0.00 1.00 ± 0.01 (1.00 ∶ 378.54) 
 𝐻𝑆𝑆 0.44 ± 0.01 0.44 ± 0.01 (1.00 ∶ 1.00)  
 𝑄𝑆𝑆 0.49 ± 0.01 0.49 ± 0.01 (1.00 ∶ 1.00)  
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Fig. B.3. Contour plots of 𝐴 behaviour under CI.

Fig. B.4. Contour plots of 𝜈 behaviour under CI.

Fig. B.5. Contour plots of 𝐵 behaviour under CI.
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Fig. B.6. Contour plots of 𝐹1 behaviour under CI.

Fig. B.7. Contour plots of 𝜅 behaviour under CI.

Fig. B.8. Contour plots of 𝐿 behaviour under CI.
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Fig. B.9. Contour plots of MCC behaviour under CI.

Fig. B.10. Contour plots of MK behaviour under CI.

Fig. B.11. Contour plots of FMI behaviour under CI.
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Fig. B.12. Contour plots of OP behaviour under CI.

Fig. B.13. Contour plots of MCC-F1 behaviour under CI.

Fig. B.14. Contour plots of 𝐺𝑆𝑆 behaviour under CI.
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Fig. B.15. Contour plots of 𝐼𝐵𝐴 behaviour under CI.

Fig. B.16. Contour plots of 𝜈𝜄 behaviour under CI.

Fig. B.17. Contour plots of 𝐹𝜄 behaviour under CI.
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Fig. B.18. Contour plots of 𝜅𝜄 behaviour under CI.

Fig. B.19. Contour plots of 𝐿𝜄 behaviour under CI.

Fig. B.20. Contour plots of MCC𝜄 behaviour under CI.
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Fig. B.21. Contour plots of 𝑂𝑃𝜄 behaviour under CI.

Fig. B.22. Contour plots of MCC-F𝜄 behaviour under CI.

Fig. B.23. Contour plots of 𝐴𝑃𝑅 behaviour under CI.
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Fig. B.24. Contour plots of 𝑄𝑃𝑅 behaviour under CI.
Fig. B.25. Contour plots of 𝐻𝑆𝑆 behaviour under CI.
Fig. B.26. Contour plots of 𝑄𝑆𝑆 behaviour under CI.
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