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ARTICLE INFO ABSTRACT

Keywords: Class imbalance is the phenomenon defined as skewed target variable distributions in a dataset. In other words
Class imbalance class imbalance occurs when a dataset has an unequal proportion of target variables assigned to the instances
Classification

in the dataset. Although the level of class imbalance is simply an inherent property of a dataset, highly skewed
class imbalances cause misleading performance evaluations of a classification model to be reported by certain
evaluation metrics. This paper reviews the history of existing performance evaluation metrics for classification,
and uses a normalisation process to create new variations of these existing metrics which are more robust to
class imbalance. Conclusions about the performance of the analysed metrics are drawn by performing the first
extensive global sensitivity analysis of classification metrics. A statistical analysis technique, i.e. analysis of
variance, is used to analyse the robustness to class imbalance of the existing metrics and the proposed metrics.
This paper finds that most performance evaluation metrics for classification problems are highly sensitive to

Evaluation metric
Performance evaluation
Sensitivity analysis

class imbalance, while the newly proposed alternative metrics tend to be more robust to class imbalance.

1. Introduction

One of the key aspects in the application of any classification model
to a problem is the definition of a suitable evaluation function. The
evaluation function of a classification model or rule set inducer creates
the reference that the model uses to evaluate how well or how poorly
it performs. The metrics used to define the evaluation function of a
predictive model determines whether the end-user is able to make a
correct assessment about the suitability of the model. In addition, it
is incredibly important to provide an accurate representation of how
well a model performs so that a satisfactory objective function can
be defined for the implemented training algorithm. The metrics used
to define the objective function of a training algorithm influences the
quality of the model that the training process produces. Unfortunately,
many commonly used classification metrics are sensitive to the level of
CI and provide an inaccurate portrayal of a model when there is not
a uniform distribution of the number of instances in each class [1].
The sensitivity of metrics to CI causes problems for both the eval-
uation of the performance of models, and for training models with
meta-heuristics when these metrics are used in objective functions.

A considerable complication encountered when working with
skewed (imbalanced) datasets is that very often the most important or
interesting class is the minority class [2]. One of the first modern ex-
amples of studies on the issue of deceptive classifier evaluation caused
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by problematic CI was in the use of computer vision systems to analyse
satellite imagery [3]. The system was trained to find oil spills on the
ocean surface, but was sensitive to the user-requirement regarding
the false positive and false negative trade-offs [3]. Machine learning
(ML) applications in the medical field have proved useful for cancer
diagnosis; however, a positive diagnosis is most often the exception in
patients. This can be quite problematic considering the implications
of an incorrect diagnosis of the (positive) minority class [4]. Since
the advent of “big data”, manual fraud investigations have become
increasingly impractical which has required a more rapid switch to
automated systems [5]. The increased use of automated systems has
escalated human dependence on reliable classifier evaluation methods
in even the most unbalanced datasets. Fraud detection systems have to
investigate hundreds of thousands of transaction records, of which the
vast majority are authentic. This creates an extremely skewed dataset
which often results in poor performance using traditional classification
methods [6]. Furthermore, the internet has increasingly become a
breeding ground for malicious individuals to attack vulnerable systems
on the web. This has created the need for intrusion detection systems
which also represent a league of problems where the target class is in
the extreme minority [7].
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2. Scope and contributions

To the knowledge of the authors, this is one of the most complete
reviews of metrics for the evaluation of classification performance with
respect to CI. Literature which analyses the behaviour of classification
metrics under CI does exist and provides insight into the shortcomings
of classification metrics [8,9]. However, current studies do not provide
insight into how to improve classification metrics. The analysis per-
formed in this paper is both model-agnostic and dataset-free, which
makes the results generally applicable to all areas of artificial intelli-
gence and fields of application. The three main contributions of this
paper are as follows:

+ This paper reviews the historical origins of binary classification
metrics popular in literature today. There are publications, with
contemporary use of performance metrics, which do not cite the
proposers of the implemented metrics. This paper provides a
comprehensive review of the history of these metrics, and gives
the necessary credit to the original authors.

This paper proposes a normalisation technique to make metrics
more robust to CL CI results in large differences in the ranges of
the entries of the confusion matrix. Because of the range differ-
ences, a technique which ensures that components of metrics have
equal contributions is proposed. The normalisation technique
results in new metrics which are more robust to CI. There are two
cases where the normalisation technique results in the rediscovery
of existing metrics; for these cases, proper credit is given to the
original authors.

This paper performs the first global sensitivity analysis (SA) of
existing and proposed metrics, which provides insight into how
sensitive metrics are to CI. A method based on analysis of variance
is used to perform the global SA.

The remainder of this paper is structured as follows: Section 3
provides the required background information drawn from relevant
literature, after which Section 4 describes the normalisation process
used to create new metrics. Section 5 reviews binary classification
performance evaluation metrics popular in this field followed by Sec-
tion 6 which proposes new variations of certain existing metrics. The
empirical process used to evaluate the discussed metrics is outlined in
Section 7, and the results of the evaluations are presented and discussed
in Section 8.

3. Background

This section presents the concepts relevant to the rest of this pa-
per. These concepts include the foundations relevant to performance
evaluation metrics for classification systems which are discussed in
Section 3.1. This section starts with a background on the problem
wrought by CI, followed by a subsection on the definitions of the parts
which constitute classification metrics. Finally, the statistical technique
(ie. analysis of variance with Sobol’ sequences) used to analyse the
popular performance metrics is described.

3.1. Imbalanced classification

Datasets can be described by a few salient features like the number
of instances in the dataset, the number of input features, the data type
of each feature, and the distribution of the target feature values of the
dataset. This so-called distribution of the target feature values is a very
important aspect to take into account when evaluating the performance
of a classification algorithm on a dataset. To illustrate, imagine a case
where there is a dataset D that contains 99 instances of class A for
every 1 instance of class B. By using the popular baseline comparison
approach of always predicting the majority class (class A), an accuracy
of 99% is achieved.
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This “untrustworthiness” of performance evaluation metrics as seen
in the example above is a well-known phenomenon, as demonstrated in
the following studies from literature. Swets reviewed the shortcomings
of accuracy on a range of real-world problem domains which include
weather forecasting, information retrieval, aptitude testing, medical
imaging, materials testing, and polygraph lie detection [10]. Brzezinski
et al. used barycentric visualisation to analyse ten different properties
of metrics, and showed the importance of considering the effect of the
CI when selecting a metric to use [11]. Amadzadeh and Angryk created
a contingency space to determine how metric behaviour changes with
CI, the study showed that four popular metrics are highly sensitive to
CI [12]. Brzezinski et al. used a binning technique to create histogram
visualisations of the probability mass functions of different metrics un-
der CI and found that data-streams with variations in CI are particularly
susceptible to result in misleading metric interpretations [13]. Luque
et al. created and visualised a metric bias function to determine for
which metrics CI introduces bias, and used clustering to quantify the
similarities of the biases of different metrics [14].

Popular approaches in ML literature which deal with CIs typically
involve either a form of artificial manipulation of the dataset, using ML
algorithms which are more robust to imbalance datasets, or redefining
the problem as an anomaly detection problem [2,15]. Artificial ma-
nipulation of the dataset materialises in the form of either reducing
the number of instances in the majority class (undersampling), increas-
ing the number of instances in the minority class (oversampling), or
both [16,17]. An example of reducing the majority class is to sample
a random subset of the instances of the majority class to reduce its
number of instances to be similar to that of the minority class. This
random undersampling technique is a straightforward way to reduce
CI, but can cause the majority class to become misrepresented, because
important instances may be discarded. Alternatively, more advanced
methods can be used to reduce the majority class; for example, using
a cluster-based stratified undersampling technique [18]. Further, mi-
nority oversampling is an approach used when training data is scarce
and the user cannot afford to reduce the size of the majority class.
This can easily be achieved by duplicating instances of the minority
class and adding them to the training set. More advanced methods have
also been proposed which create new artificial instances of the minor-
ity class. These techniques (e.g. the synthetic minority over-sampling
technique (SMOTE) [19]) create additional variety among the minority
class training instances, but may also unintentionally introduce false
concepts that a classifier might learn. Zhang et al. investigated the
effect of combining data resampling and feature selection in different
orders, and the effect this has on imbalanced learning [20].

Many of the modern day approaches to dealing with class imbalance
involve some form of dataset manipulation. For example, Dube and
Verster studied the effects of nine different levels of class imbalance
(between 1:9 and 1:1) on ten different ML models using five different
performance metrics [21]. Dube and Verster found various ML models
to be sensitive to class imbalance, with varying results between dif-
ferent evaluation metrics. For example the stochastic gradient descent
classifier (SGDC) had an F; score of 0.0335 for 1:9 imbalance and a
score of 0.5223 for a 1:1 imbalance; similarly SGDC had a Matthew’s
correlation coefficient (MCC) score of 0.1024 for 1:9 and 0.4548 for
1:1 imbalance.

De la Cruz Huayanay et al. compared the effectiveness of 12 differ-
ent metrics in determining the best ML model for binary classification
problems [22]. In order to evaluate the effectiveness of different metrics
in selecting the optimal ML model, De la Cruz Huayanay et al. simu-
lated imbalanced data using the Power-Cauchy distribution and applied
the Kolmogorov-Simrnov test between the known Power-Cauchy curves
and the metric curves. De la Cruz Huayanay et al. claimed that MCC, g-
mean, and Cohen’s kappa yielded metric curves closest to the expected
Power-Cauchy curve.
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Another recent study of classification metrics by Siblini et al. [23]
proposed the use of the likelihood ratio [24] as the optimal scoring
function, i.e.

Py(x ly=1

S,(X) = m (1)

With reference to the likelihood ratio, Siblini et al. proposed that a
desirable performance metric satisfies the property that the likelihood
of x, i.e. P,(x|y), does not change as the prior, i.e. P,(y), varies. Siblini
et al. proposed metrics which satisfy this property, referred to as

“calibrated metrics”, by incorporating positive class ratio, 7 = #
(i.e. the percentage of instances in the target class) into the metric
calculation. The calibrated metrics from Siblini et al. showed that the
prior class distribution of the dataset plays an important role in the use
of performance evaluation metrics.

Gu et al. outlined the shortcomings of a few popular performance
metrics on imbalanced datasets [25]. Specifically, Gu et al. discussed
the issues which afflict accuracy, precision, recall, and the ROC curve.
Accuracy does not discriminate between the type of error made; mis-
classifications of the target class and non-target class are both penalised
equally, which is not always ideal. When using precision and recall to
evaluate a ML model, the result does not take the correctly classified
non-target instances into account which can lead to misleading inter-
pretations of model performance. As a result, situations can arise where
a classifier has vastly different behaviours on different datasets with
varying numbers of non-target instances, even though the precision and
recall remains the same. Gu et al. also critiqued the ROC curve for
not taking precision into account, since it renders the metric blind to
cases when there are a significant number of misclassified non-target
instances.

3.2. Fundamentals of measures and metrics

What would be described as the qualities of a good metric varies
depending on the application of the metric [26]. When a metric is
used to evaluate the performance of a model after training has been
completed, the metric should quantify the generalisation capabilities
of the model. However, if a metric is to be used in the training process
of a model, then using a metric suited to assess the generalisation
performance of a completely trained model is short-sighted, because
the metric may cause the training process to stagnate in a suboptimal
local minimum. Instead, the metric should be able to capture the future
classification potential of the model-in-training at a given time-step
during the training process [26,27].

When constructing a metric to quantify how well a classification
model performed, there are a few constituent measures which are
important building blocks of all available classification performance
metrics. In a given dataset of T instances, there are P instances from
the target class (the feature value that the model tries to predict) and N
instances that are not in the target class (N = T — P). Of the instances
which a model has classified as belonging to the target class there
are correctly classified and incorrectly classified instances. Instances
correctly classified as belonging to the target class are referred to as
true positives; the number of true positives is denoted as 7,. Instances
incorrectly classified as the target class are called false positives; the
number of false positives is denoted as f,. Similarly, the number of
instances correctly identified as not belonging to the target class (these
instances are true negatives) are denoted by r,, while the number
of instances incorrectly associated as the non-target class (the false
negatives) is denoted as f,. The sum of the instances classified as
belonging to the positive class (irrespective of correctness) is denoted
by P’ and the sum of the instances classified as the non-target class is
N'.

These classification measures and the relationships between them
are summarised in the confusion matrix for binary classification prob-
lems, as shown in Table 1.
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Table 1
Example of a general confusion matrix.
Ground truth Total
Positive Negative
Positi t P
Predicted value osttive 4 I ,
Negative fau t, N
Total P N T

In order to be thorough, and to avoid any possible confusion that
may be caused due to notation inconsistencies in existing literature,
attention is brought to the following notation:

The number of instances in the positive class is P =1, + f,,.

The number of instances in the negative class is N =1, + f,.

The number of instances classified as in the positive class is P’ =
I+ fpe

The number of instances classified as in the negative class is
N' = f,+1,.

The confusion matrix has four degrees of freedom. However, this
can be reduced to two degrees of freedom as follows:

- because P is constant, f, can be omitted and (P —7,) used,
and
- because N is constant, 7, can be omitted and (N — f ») used.

Additionally, for the sake of brevity, it is often seen that metric func-
tions are stylised as not having any input parameters. Hence, a metric
which is a function of the number of true positives, true negatives, false
positives, and false negatives, i.e. f (tpstus s ) 18 simply referred to as
f.

Table 2 outlines simple metrics using the symbols defined above.

The nomenclature inconsistencies from existing literature are il-
lustrated further by the entries in Table 2, where some entries have
multiple names (e.g. TPR = sensitivity = recall). In order to clarify the
confusion that can be caused by these naming inconsistencies, Canbek
et al. defined a periodic table of performance instruments (PToPI)
in [28]. The PToPI defines a hierarchy which outlines the relational
structure of “performance instruments”. Canbek et al. performed an
exhaustive analysis and provided a full taxonomy, hence the term
“performance instruments” is used as an umbrella-term for any formula
which is used to evaluate how well a model performs. Categories
of performance instruments defined by Canbek et al. include base
measures, 1st level measures, 2nd level measures, 3rd level measures,
base metrics, 1st level metrics, and 2nd level metrics.

This paper is concerned with binary classification metrics, and not
the full spectrum of performance instruments. Hence, for brevity, a
simplified naming schema is used which consists of the following:

» Measures: components of the confusion matrix. This category
includes true positives, false positives, true negatives, false nega-
tives, the number of positive instances, the number of negative
instances, the total number of instances, the sum of instances
classified as the target class and the sum of instances classified
as part of the non-target class.

Rates: normalised versions of entries in the confusion matrix
(entries which have been divided by their maximum value). The
category of rates includes the true positive rate, false positive rate,
true negative rate, false negative rate, positive predictive value,
negative predictive value, false discovery, rate and false omission
rate.

» Metrics: more complex performance instruments constructed

from measures and rates.

The above-mentioned classification schema is not exhaustive, and is
simply provided to improve coherence. For a comprehensive system,
the reader is referred to [28].
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Table 2
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Symbols used throughout this paper.

Symbol

Meaning Equation

'br,,

P

o,

Py,

Pf,

The true positive rate (TPR) is also referred to as sensitivity
or recall. It is the number of instances correctly classified as

»
?

the target class compared to the total number of instances in
the target class.

The false positive rate (FRP), also known as the fall-out, is 5

the ratio of the number of instances incorrectly identified as
a part of the target class to the number of instances in the
target class.

The true negative rate (TNR) contextualises the number of -
instances correctly classified as not belonging to the target

class. This metric is also referred to as specificity or

selectivity.

The false negative rate (FNR), or miss rate, weighs the
number of instances incorrectly classified as not belonging to
the target class against the number of instances in the target
class.

The positive predictive value (PPV) is the proportion of true
positives to the total number of instances classified as the
target class. It is also referred to as precision.

The negative predictive value (NPV) is the proportion of true -
negatives to the total number of instances attributed to not
belonging to the target class.

The false discovery rate (FDR) quantifies the number of type =
I errors made by a classifier because it proportions the

number of false positives to the total number of instances

assigned to the target class.

The false omission rate (FOR) is the proportion of instances L

N
incorrectly assigned a non-target class value compared to the
total number of instances assigned to the non-target class.

3.3. Sobol’ sensitivity analysis

SA is the process by which the effect of different input variables on
a function output is quantified. Sobol pioneered sensitivity estimates
for nonlinear mathematical models in 1993 and proved a theorem that
an integrable function can be decomposed into the sum of different
components for SA [29]. This approach, functional analysis of variance,
is a technique used to quantify the effect that an input variable has on
a mathematical function. Sobol investigated performing Monte Carlo
simulations to determine sensitivity estimation with respect to a group
of variables, as well as the effect of freezing unessential variables.
Functional analysis of variance has since been expanded to include
approaches based on sequence kernel association tests [30], func-
tional linear models [31], and Bayesian non-parametric modelling [32].
This paper uses a popular open-source python implementation' for SA
from [33,34]. The remainder of this section outlines the background
information on the utilised SA method, referred to as S’SA.

In S’SA, points are sampled from the domain of valid variable
inputs through a quasi-Monte Carlo technique, called Sobol’ sequence
(SS) sampling. The approach for sampling SSs is given in [35], with
complexity improvements for the sampling process given in [36]. En-
hancements of the quasi-randomness was proposed in [37], after which
a stability study was performed on the sampling algorithm and is given
in [38].

From the sampled SS, global sensitivity indices are calculated to per-
form analysis of variance (ANOVA); these sensitivity indices are used to
estimate the influence of individual variables and subsets of variables
on the model output. The calculation of Sobol’ sensitivity indices are
outlined in [35]. Sobol’ sensitivity indices are categorised as first-order
(S}), which quantify the influence of individual input variables on the
output, and second order (S,), which quantify the influence of pairs of

1 https://github.com/salib/salib.

variables. Modifications to the first-order sensitivity calculations were
presented in [39], with modifications for the second order sensitivity
calculations given in [36]. Finally, error reducing improvements were
incorporated in [40]. A brief overview of the calculations required to
calculate the global sensitivity indices as presented by Sobol’ [35] is
provided below.

In order to perform ANOVA, Sobol’ uses a unit interval (I = [0, 1])
to represent the input space as a d-dimensional unit hypercube (I9).
Consider an integrable function defined on I¢ in the form

d d
F@)=fo+ 2 X fia i) @)

s=1 iy <-<i

where 1 <i; < - <i; <d. Eq. (2) is called the ANOVA-representation
of the function f(x) if

1
/ Fiyoi Gy x; ) dxy for k=iy, .. iy (3
0

Assuming that f is square integrable, and that each component of
the decomposition of f is square integrable, squaring and integrating
results in

1 d d 1
2 2 _ 2
s=LIp<<ly

From which the constants,

1
D= / frdx— 3. ®)
0
and
d d 1 5
Dil.uis:Z Z /fi,.“isdxil"'dxix (6)
s=1ij<-<ig /0

are defined. The constant D is the total variance of the output and

D, ;, is the variance attributed to the subset of variables, i, ... i.
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The global sensitivity index of a subset of variables, i, ...i, is
defined as
D, i,
Sil...iA = 7D @

The sensitivity indices are used to calculate how much of the total
variance of a function output is attributable to a specific variable or
subset of variables. The main effect of an input variable x; is given by
the corresponding first-order sensitivity index Sy

For this study on the effect of CI on metric performance, S’SA is used
to determine how sensitive a given metric is to an input parameter (i.e.,
tys fps tns fy) under different levels of CIL

4. Metric normalisation process

The purpose of this paper is three-fold: to provide a comprehensive
review on the origin of existing metrics, to determine the sensitivity
of the metrics to CI, and to propose variations of the existing metrics
which are more robust to CI.

This paper uses normalisation to create modified versions of ex-
isting metrics, in the hope that existing metrics can be made more
robust to CI. The fact that components which represent the majority
class come to dominate existing metrics, serves as motivation behind
the normalisation process. The approach to create new metrics is to
normalise the constituent parts of existing metrics. The normalisation
of the components of a metric scales the output of each component
of the metric to [0, 1]. Components with the same output range have
the same influence on the final metric value, contrary to components
which vastly different influences due to vastly different output ranges.
The normalisation process followed is:

1. simplify the metric into elementary form such that it consists
solely of measures,

2. normalise each measure in the metric, so that each measure
becomes a rate,

3. scale the metric so that the output is in [0, 1] and the optimum
is at 1.

In order to normalise measures within a metric, a function g : M —
R is defined, where M is the set of measures and R is the set of rates.
The function, g, is defined as

gm) = {5
N

Instances of other measures, e.g. P, N, P’ and N’, are implicitly
handled by g since these measures can be reformulated in terms of 7,
fps 1y and f,.

For example, to modify an existing metric, true positives (z,) are
divided by the total number of positive instances (P), which results in
the true positive rate (d),p). Similarly, the false positives (f, ) are divided
by the number of available negative instances (N), which results in
the false positive rate (& f,,)' This normalisation process is applied to
existing metrics from literature which are not already defined in terms
of rates.

if me {1, f,},

) ®
if m€ {1,, f,)-

5. Existing performance metrics for classification

This section outlines the existing metrics currently popular in liter-
ature.

5.1. Accuracy

Accuracy is a ubiquitous metric in the modern ML community, and
it is unfortunately not possible to pinpoint a single seminal paper which
proposed the metric of classification accuracy. The idea of “percentage
of correct instance” pre-dates ML and artificial intelligence in fields
such as biology and meteorology. The use of “accuracy” in ML is
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present in the inaugural paper on The Perceptron, where Rosenblatt
calculated the probability that the perceptron gives the correct response
to a stimulus as P, [41].

The accuracy metric as defined by Fiirnkranz and Flach [27] ac-
counts for both the correctly covered instances and incorrectly covered
instances. Accuracy is an improvement over the basic strategy of simply
trying to maximise the number of true positives or to minimise the
number of false positives. By accounting for both objectives, the metric
aims to find a solution that compromises well between classifying as
many instances of the target class correctly, while not inadvertently
also classifying instances from the non-target class as part of the target
class.

The accuracy metric is defined as
t,+1
A=——P " 9
I+, + f » Tt I

5.2. Gilbert’s ratio of verification

Gilbert’s ratio of verification has its origins in the study of mete-
orology, with a full history of this metric summarised in [42]. The
fundamental idea behind this metric has been in literature for over 100
years as first communicated in [43] as criticism of Finley’s publication
on the accuracy of tornado predictions [44]. Gilbert [43] outlined the
fallacy behind the evaluation method that Finley used to quantify the
success of tornado predictions and suggested an alternative approach
called the ‘“ratio of verification”. Gilbert’s ratio of verification was
proposed with the symbol v and expressed as

c
V= e (10)
where c¢ is the number of verified predictions, o is the total number of
occurrences, and p is the number of positive predictions.

Gilbert’s ratio has been reproposed multiple times, with two notable
proposals characterised by new names for the metric, e.g. threat score
(TS) from [45] and critical success index (CSI) from [46]. Both the TS
and the CSI are essentially v rewritten using #,, f, and f,. However,
both are more commonly used terms in the domain of ML evaluation
metrics. The formula for these scores is

1
TS=CSI= — 2 1D
t,+ ot/

The remainder of this paper uses the index as defined in Eq. (11), but
uses the symbol v in homage to Gilbert as the original proposer.

5.3. Balanced accuracy

Five metrics, i.e. balanced accuracy, Pierce’s I, Youden’s J statis-
tic, bookmaker’s informedness, and area under the ROC curve, are
inextricably linked; hence, these five metrics are presented together.

Pierce’s I. Pierce, similarly to Gilbert, saw the error of Finley’s method
and proposed another alternative which is now referred to as Pierce’s
I [47]. Pierce originally proposed

__ (@ () i (12)
(aa) + (ba)  (ab) + (bb)

where (aa) = t,, (ab) = fp, (ba) = f,, and (bb) =t,,.

Youden’s J. Youden initially developed the J statistic to judge how
well a diagnostic test performs [48]. Youden’s proposed statistic is an
early attempt at addressing the shortcomings of simpler metrics which
do not account for both correctly classifying target instances and non-
target instances. Reviews of the J statistic in medical applications have
expressed concern that there is no mechanism to apply weights to
either of the two components (tb,p, tb,n) to make one or the other more
important [49]. Youden’s J statistic is

J=o, +@, -1 13)
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Bookmaker’s informedness. The bookmaker’s informedness metric was
proposed in [50] by Powers. The rationale of Powers was that a good
way to estimate how suitable a classifier is, is to compare the classifier
to how well a person betting on fair odds would perform against a
random guesser. The formulation of bookmaker’s informedness is the
same as Eq. (13).

Area under the receiver operating characteristic curve. ROC curve analysis
is a technique developed in the second world war to determine how
successful military radars were at distinguishing between enemy aero-
planes and signal noise. The origin of ROC curves is slightly obscured
due to the nature of the situation in which it was created. However,
to the knowledge of the author, one of the earliest references to ROC
curves was made by Peterson in a paper completed for the U.S. Army
Signal Corps [51].

After its successful use in signal detection for military application,
ROC curve analysis was applied to evaluate a new theory of visual
detection in a psychological context by Tanner and Swets [52]. Since
the application in [52], ROC analysis has been an integral tool for the
medical diagnosis field [53-55]. However, it was not until Spackman’s
application of ROC curve analysis to ML problems in [56] that the
technique started gaining popularity in the ML community.

A ROC curve is generated by plotting the @, on the y-axis against
the @ s, on the x-axis for different threshold values of the classifier.
These two-dimensional graphs depict the trade-off that a classifier has
to make when assigning instances to the target class. The classification
of all instances as the target class results in a perfect score for that
class, but incorrectly classifies all non-target class instances. This gives
the user the ability to measure the sensitivity of the classifier against
the fall-out of the classifier.

A ROC graph has a range and domain of [0, 1], with four salient
(x,y) points on the graph. The following list outlines what points on
the ROC curve in the vicinity of different x and y values (denoted as
~ (x,y)) indicate:

+ ~(0,0) represents a classifier which classifies all instances as part
of the non-target class.

+ ~ (0, 1) represents a classifier a perfect classifier.

» ~ (1,0) represents a classifier which classifies all instances (of the
target class and non-target class) incorrectly, i.e. all classifications
are opposite to the ground truth.

» ~ (1, 1) represents a classifier which classifies all instances as part
of the target class.

Fig. 1 depicts a single point on the ROC curve.

The area under the curve (AUC) of the ROC curve can be estimated
by decomposing the plot into one rectangle and two triangles. The
formulas for the area of a square, AD, and the area of a triangle, A, are
defined as A = /- w (where [ is the length of a side and w the width)
and A, = % -b-h (where b is the base of the triangle and #4 is the hight).
The total AUC is defined as the sum of the main rectangular body ([7)
and the two triangles (a; and 4,), resulting in Apoc = Ag+A4,, + A4,
The simplification from the area calculation to the arithmetic mean is
shown below:

Agoc = (AD + Ay + AAZ)

:(l~b+l~b,-h,+%-b2~h2)

2
_ 1 1 14
= ((1-<1>fp)-ct>,p+E "By @+ (] -qafp)-(l-cb,p))
P+,

- 2

Balanced accuracy. Brodersen et al. used a probabilistic view of per-
formance evaluation to propose the balanced accuracy metric [57].
Balanced accuracy aims to provide generic safeguards against reporting
an optimistic accuracy estimate, which can be caused by CI. A further
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Fig. 1. Trigonometric properties of a single point ROC curve.

motivation given for balanced accuracy is to fix the impossible statisti-
cal situation where confidence intervals of conventional accuracy can
exceed 100% [57]. Balanced accuracy is given as

O, + @,
BA = FT (15)

“Metric B”. The five metrics discussed in this section are either equiva-
lent to, or estimators of each other (@,p +@, -1 m). It would be
superfluous to analyse each individually, given that all metrics in this
paper are modified to be in the range [0, 1]. Therefore, the following
metric is used
D, +D,

5.4. F-Measures

The F-measure is a family of metrics which weight the precision and
recall of a classifier against each other. These metrics stem from work
done by Van Rijsbergen [58] in the book Information Retrieval. Van
Rijsbergen developed an effectiveness measure to balance the trade-off
between the precision and recall of a search result from text. Initially,
Van Rijsbergen’s measure achieved this balance by using a parameter
«a as follows:

E:l——l a7

1 1
a(% )+ a)%

where p, is the precision and @, is the recall (as defined in Table 2).
To facilitate interpretation of the function, Van Rijsbergen applied the
transformation a = ﬁ to Eq. (17). This results in the general form of
the F score as follows:

(). (=2

ty+fp t+fn

P () + ()

ty+fp ty+fn

Fy=(1+p% 18)

Eq. (18) defines the popular metric F; which is used in this paper.

To define the F, metric, § is set to 1 in Eq. (18). This results in
a function which calculates the harmonic mean between the precision
and recall metrics of a classifier. Through simple algebraic manipula-
tion, the F| score is transformed to consist of only measures as follows:

2.1,

Ff=— ———
2-t,+ fut [

(19)
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5.5. Kappa

Cohen’s Kappa (x) is a similarity statistic developed by Cohen in
1960 for use in determining the overlap in identical values between
variables (in the original article, these variables were the diagnoses
given by various psychologists) [59]. Although Cohen’s Kappa is the
most popular version of this form of metric, it was not the first. An
equivalent formulation of this metric was proposed 34 years prior by
Heidke and was used to measure how well wind forecasts are made.
Heidke’s original metric was termed the Heidke skill score (HSS) [60].
However, Cohen’s formulation and notation is currently used almost
exclusively.

What makes Cohen’s metric unique and significant, is that it takes
into consideration the probability of a coincidental similarity between
variables. Cohen proposed the Kappa metric to account for unrelated
chance being interpreted as apparent causation.

Cohen’s Kappa coefficient is defined as
= Do — Pe

1- Pe
where p, is the observed agreement between variables and p, is the
expected probability of agreement between variables due to chance. In
the context of classification, the observed agreement is the accuracy of
the classification (p, = :ﬁ:;; ). The expected probability of agreement is
defined as the expected accuracy between two statistically independent

. . t,+ +fn 1+ e
observations, ie. p, = ( ;Jj\‘; . t;jv ) + ( P+£§’ . ';Lfv” ) Substitution of

(20)

the values for p, and p, and the simplification of the subsequent formula
results in a more convenient form of the Kappa coefficient using base
measures as follows:
:lA< 2.y ty=fp f) N >
2 N+ ) (1) + @+ ) (fy+1)

Note that this form of Kappa is scaled to be in the range [0, 1] for
balanced data, but under extreme levels of CI the range of Kappa tends
to [0.5,1.0].

2D

5.6. Laplace estimate

Laplace developed the rule of succession as a probability estimator
for seemingly certain events using the example of calculating the
probability that the sun rises tomorrow [61]. The Laplace estimate is
similar in form to the classical precision metric, but encourages more
instances to be classified instead of encouraging a small number of
perfectly classified instances. This is because with Laplace’s estimate,
a small number of classified instances equates to randomly guessing to
which class an instance belongs [26]. When the number of instances
classified tends to infinity, the Laplace estimator behaviour becomes
identical to that of precision.

The Laplace estimator formula is given as
1, +1
- _? _ (22)
I+ fp+2

5.7. Matthew’s correlation coefficient

MCC is a performance metric shown to be a good quantifier of the
relationship between the predicted values of a classifier and the true
values of the dataset [62]. Early versions of this metric were proposed
by Yule and refined by Pearson as the ¢ (mean square contingency)
coefficient [63,64].

However, the metric was later repopularised by Matthews [65],
for whom this metric is named, to compare structural similarities in
lysozymes in work in the biological sciences. This metric was then
first used for ML applications by Baldi et al. [66] and has since been
established in the field.

MCC uses all four possible input variables (i.e. Ths fps T and f,)
and gives an indication of how well a pair of variables are correlated.
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When the performance of a classification or rule induction algorithm
is evaluated, the two variables for which the correlation is measured is
the true labels and the predicted labels.

The equation for the MCC metric is outlined as

MCC:L( bt Jo Sy +1)
2\ VG + ), + L)+ FE, + f)

(23)

5.8. Markedness

Powers [67] proposed a metric called markedness (MK), named
after the psychological and linguistic terms of condition and marker.
A condition is an experimental outcome that is determined by indirect
means and a predictor is the indicator that is used to determine the
outcome.

The MK metric maps the classification performance of a model to
the line e, ¥y, =1 which represents the trade-off between the positive
predictive value (p,p) and the negative predictive value (p,"). To keep
with the general metric structure of this paper where all metrics are
scaled between [0, 1], the MK metric is modified slightly and takes the
form of the arithmetic mean between PPV and NPV:

MK=p,p+p,n -1
pi, + P, @4

T

5.9. Fowlkes-Mallows index

Fowlkes and Mallows [68] derived and outlined a measure of simi-
larity for two different hierarchical clusterings, known as the Fowlkes-
Mallows index (FMI).

The original definition (with non-overloaded symbols) for the FMI
metric given by Fowlkes and Mallows is

T,
M, = __k (25)

VPO

where

=~
1]
M-
M-
3
I
|
S

E

I
M~
3

~
I

s

I
M~
3

From the original proposal in Eq. (25), an interpretation of FMI for
classification performance evaluation was proposed in [69], which
defines the FMI metric as the geometric mean between precision and
recall as follows:

FMI=,/®, -p, (26)

5.10. Optimised precision

Optimised precision is a metric proposed by Ranawana and Palade
as an improved heuristic used to train multi-classifier systems [70].
However, name “optimised precision” is a misnomer as the formulation
given for precision by authors of the metric is in fact accuracy.
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Ranawana and Palade outlined the potential issues of training on
a dataset with a large proportion of non-target class instances, and
proposed that a solution is to simultaneously minimise (|@, - L)) and
maximise (@, +¢'t,,)' The solution given is to incorporate a new metric
named relationship index, the relationship index is defined as

|¢r,, - <Dlp|
Rl = ———. 27)
@, + O,
The final metric for optimised precision is
OP=A-RI
B t,+1, _ @, — @, |
Lttt o+l @+ @ (28)

1 1,41, @, — @, | 1
X = - + .
2 \t,+t,+fy+fy @+ P

5.11. Matthew’s correlation coefficient-F1 metric

As part of an attempt to develop an improved alternative to the pop-
ular ROC curve and PR curve analysis techniques, Cao et al. proposed
the MCC-F, curve and the corresponding MCC-F; metric [71]. Cao et al.
claimed that the MCC-F, is more informative than the ROC and PR
curves, because MCC-F; summarises the whole confusion matrix instead
of only parts of the confusion matrix. The MCC-F, curve plots the values
of a normalised MMC against F; for different threshold values and the
MCC-F, metric then calculates the average distance between the points
on the MCC-F, curve resulting from different thresholds to the point
representing an idealistic classifier.

The metric is calculated as follows over different threshold val-
ues: np thresholds are used to test a classifier, for each point i €
{0,1,...,np — 1} the prediction score f(x;) is calculated and the unit
normalised MMC value, X;, as well as the F, value, Y}, is identified. The
MMC values are divided into W = 100 subranges, each with a width of
w = (max; X; —min; X;)/W . The Euclidean distance of a point i and the
perfect classifier point (1, 1) is calculated using

D, =4/(X; - 1?2+ (; - 1)? (29)

The maximum distance possible between a point i and the ideal clas-

sifier occurs if i represents the worst possible classifier at (0,0). This

worst-case distance is /2. The MCC-F, curve is then divided into two

sides, left (L) and right (R), and the set of points in the subranges of

each side is calculated as Z*, with j € {0,1,...,W —1} and s € {L, R}.
J

The number of points in these sets is defined by

For the sets with a non-zero number of points, the mean distance D;, is
defined by
_ Zzez; D;
(T GV
J
All pairs of sides and subranges D = (s, j) for non-zero Z ; are identified;
the generator function for this set is given as

D={(s,j)|s€{L,R},je{O,l,...,W—l},n‘;.>0} (32)

To get the grand average D*, mean distances D‘J‘. are averaged over the
D pairs as shown below:
Z(Y J)ED D;
pr= 20" J (33)
|D|
Division of the grand average by the hypothetical max distance results
in the final metric of

D*

MCC-F, =1- (€2))

2
Computation of the MCC-F; metric for only one threshold simplifies
the process somewhat. One threshold creates the conditions ny = 1
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and i = {1}, meaning that n’ = 0 except for one value of j, ie.
|{n; : n'j‘. > 0}| = 1. The mean distance then becomes

b =21
i 1
The set of (side, subrange) pairs then also contains only one point,

giving the grand average the same formula as the mean distance, i.e.

(35)

D,
Finally, the metric becomes
D F, — 1)2 + (MCC - 1)?
MCCF, = —L=1- VE - 17+ ) (37)

V2 V2
5.12. Sensitivity specificity geometric mean

Similar to how the FMI is the geometric mean between the precision
and recall, the geometric mean between the &, and &, has also been
used in [72]. Kubat et al. [72] proposed this metric to evaluate the
performance of systems detecting oil spills. It aims to maximise the
accuracy on both the positive class and negative class, and to minimise
the discrepancy in the levels of accuracy between these two classes.
The original authors simply referred to their metric as g (for geometric
mean) and used a* to mean @, and a~ to mean @, . The original
formula is

e= Voo (38)

In order to prevent confusion by using a general term like geometric
mean (g) to mean a specific implementation thereof, this paper refers
to the metric of this section specifically as the geometric mean between
the sensitivity (tb,p) and specificity (tb,p ). Therefore, the geometric
mean between the sensitivity and specificity (Ggg) is

Gss =1/®, - @, (39)

5.13. Index of balanced accuracy

The index of balanced accuracy (IBA) was proposed by Garcia et al.
for evaluating two-class problems in imbalanced domains [73]. IBA
combines the geometric mean of TPR and TNR with a dominance
relation between TPR and TNR. Garcia et al. also proposed that the
dominance relation can be combined with any metric, in order to make
the metric more robust to CI [74].

For IBA, the geometric mean component is as defined by Kubat et al.
in Eq. (38), and the dominance relation is

d=o, -, . (40)
Garcia et al. combined Egs. (38) and (40) and defined IBA as

IBA=(1+d)-g*

41
=0, 0, -(1+®, —@,)

6. Modified performance metrics for classification

This section proposes the modified metrics, based on the metrics in
Section 5 which are constructed from elements of the confusion matrix
and not on rates. Sections 6.1 to 6.7 present modified versions of the
metrics summarised in Section 5. Further, Sections 6.8 to 6.11 present
new metrics inspired by the popularity of using averages of either
sensitivity and specificity, or precision and recall. Sections 6.8 to 6.11
ensure that all variations of means (arithmetic, harmonic, geometric,
and quadratic) are applied to these popular combinations.
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6.1. Modified Gilbert’s ratio of verification

This section proposes to modify Gilbert’s ratio of verification. The
starting point is v from Eq. (10), and the final result of v, is obtained
by

v (2,). 80, g(f,). 8(f)

)

P

o fu I
PTPTN (42)

6.2. Modified F, measure

The algebraically simplified version of the F, metric posed in
Eq. (19) is modified to create a new metric, F,, i.e.
Fy (8(t,).8(,).8(f,), (/,)
Ip

_ v

ey D
2- 24442 43)

2.,

-
2.0, +®, +&,

=F

6.3. Modified Kappa

The Cohen’s Kappa metric from Eq. (21) is normalised below:

K (8,).8(,). g(f,). &)

1 P N N P
_54(’1+Q).(Q+’_n)+(t_ﬂ+ﬁ).(ﬁ+’_n)+l

PN N TN PTP) P TN
=1~< A +1> -
2\@,+9,) @, +0,)+ @, +o,) @, +P,)
=K

6.4. Modified Laplace/modified precision

The Laplace estimator is normalised using the following process:

L (g, e(t,).8(f,). ()
Tp 1

__rt

S

P + ¥ +2
@, +1

-
db,p + dwfp +2

=L,

(45)

where both d),p and @ 5 have a range of [0, 1]. This result seems anal-
ogous to the normalisation results of previous metrics, but the Laplace
estimator has constants in both the numerator and denominator. The
effect of the constants causes the range of output for the metric to be
[%, %]. However, the aim for all metrics, for the purposes of this paper,
is that the range is to be [0, 1]. Hence, the following additional steps
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are followed:
@, +1
P
L = —2
dS,F + @ 7 +
&, +1
4

((7%m)-3)

@, +1 X (46)
o, +o,+2)

3-@, +3
Y ——
¢,p+¢fp+2

W
|
W=
S—

=1,
6.5. Modified Matthew’s correlation coefficient

This section proposes a modified version of MCC, which has been
made more robust to CI through normalisation. This is accomplished
through the normalisation process of dividing #, and f, by P and 7,
and f, by N as shown below:

MCC (g(1,), £(2,), 8(f,), &(f))

=%~ : : +1
o oyl o Suyln pyin o In
VG G+ e+ G+ B @
_L 2y P02 +1
2 \/(cD,p + O D, + DB, + DD, +P)
= MCC,

6.6. Modified optimised precision

This section proposes a modified version of optimised ‘“‘precision”.
The normalisation results in the accuracy in the first term becoming
balanced accuracy, with the final metric given as

OP,= B-RI
@ +®, |, -, |

2 D, + (D,p (48)

1 ‘prl, + ‘Dtn |‘ptn - ‘Drp|
x = - - +1
2 2 D, +<Dt,,

In

6.7. Modified Matthew’s correlation coefficient-F1 metric

The next proposed metric is a normalised version of the MCC-F,
metric. However, for this metric the process is slightly simpler; since
the constituent parts of the MCC-F; metric are the MCC metric and the
F; metric, the existing normalised versions from Egs. (47) and (43) are
used to normalise the MCC-F; metric. The modification of the derived
single-threshold version of the metric in Eq. (37) results in

MCC-F, (g(1,). 8(t,). 8(f,)- &(f,))
~ V(F, - 1)? + (MCC, - 1)

V2

=1

(49
= MCC-F,
6.8. Area under precision recall curve

A PR curve can be generated and analysed to evaluate the perfor-
mance of a classifier or rule induction system. One of the first in-depth
formalisations of PR curve analysis was published by Buckland and
Gey [75]. A PR curve demonstrates the trade-offs made by a classifier to
optimise its performance on a binary classification problem by plotting



J. van Zyl and A.P. Engelbrecht
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Fig. 2. Trigonometric properties of a single point PR curve.

the precision (PPV) against the recall (TPR) for different threshold
values.

A PR graph has a range and domain [0, 1], with four salient (x, y)
points on the graph. The following list outlines what points on the PR
curve in the vicinity of different x and y values (denoted as ~ (x,y))
indicate

* ~ (0,0) represents a classifier which was unable to correctly
classify any instances of the target class.

~ (0,1) represents a classifier which classifies very few instances
of the target class, but those which are classified are correct.

~ (1,0) represents a classifier which classifies all instances of the
target class correctly, but at the same time none of them. This
nonsensical point is more of a parallel to a system which classifies
all instances as the target class.

» ~(1,1) is a perfect classifier.

Fig. 2 represents a generic PR plot of the performance of one
classifier. This hypothetical classifier has a precision of 0.75 and a recall
of 0.7. As with the ROC curve, the AUC of the PR curve can be estimated
by decomposing the plot into one rectangle and two triangles. The total
AUC is defined as the sum of the main rectangular body ([J) and the
two triangles (a; and 4,), i.e. Apg = Aq+ A, + A,

In the same way that the FMI metric from Section 5.9 is the
geometric mean between the precision and recall metrics, the area
under a single-threshold PR curve is calculated as the arithmetic mean
between the precision and recall metrics. The simplification from the
area calculation to the arithmetic mean is shown below:

App=(Ag+ Ay +Ag)

1 1
=<l‘b+§-bl~h1+§~b2-h2>
1 1 (50)
=(p, @, +5- @, A=p)+3 (1=, )5, )
Pr,,""(prl,
-T2

6.9. Precision recall quadratic mean

The quadratic mean is a case of the more general power mean
with specifically two components. This section proposes that the effect
of CI on the final of the four popular means be evaluated. As with
Section 6.8, this proposed metric is not a normalised version of an

10
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existing metric, but is an averaging technique applied to a popular

metric combination (precision and recall).
The rates are combined into the quadratic mean as follows:

<D,p + p,p
Orn=\—7—

6.10. Sensitivity specificity harmonic mean

(51)

Similar to how the F, measure is the harmonic mean between
precision and recall, this paper proposes testing the harmonic mean of
another popular combination rates, namely sensitivity and specificity.
The harmonic mean between sensitivity (TPR) and specificity (TNR) is
not a normalised version of an existing metric, but is a newly proposed
metric. There are no examples of this combination in the reviewed
literature. The sensitivity and specificity (TPR and TNR) are already
combined using the arithmetic mean in the balanced accuracy metric
presented in Section 5.3. The harmonic counterpart is shown below:

(52)

6.11. Sensitivity specificity quadratic mean
As in Section 6.9, this section defines the fourth average using the

popular combination of @, and @, as a potential metric. The quadratic
mean between sensitivity and specificity is calculated as follows:

D, +D,
P n
Oss=\ =7

7. Metric behavioural analysis empirical process

(53)

This section outlines how the existing and proposed metrics pre-
sented in Sections 5 and 6 are analysed under different conditions of CL.
The section also proposes a performance metric classification schema
to simplify the description and explanation of the behaviour of a metric
under CI.

7.1. Empirical process

In order to compare how robust each metric is to CI, the following
procedure was applied. Firstly, levels of CI was defined, ie. (P : N),
where P represents the number of instances in the target class and
N the number of instances in the non-target class. For this empirical
analysis, the levels of CI tested were (1 : 1), (I : 2), (1 : 100) and
(1:1000). Then input axes were constructed for different possible values
oft,€{0,..., P} and f, € {0,..., N}. The two axes were used to create
a meshgrid of 10000 points, on which each metric was evaluated to
simulate all possible configurations of the confusion matrix.

S’SA was used to calculate the importance of each input (¢, and
/) by the process described in Section 3.3. S’SA was used to calculate
first-order sensitivity indices on 2'® SSs, to ensure a sufficient number
of samples for the Monte Carlo process. The first-order sensitivity
indices were summarised as importance score means (;4, P and
;4,/ < N)) and standard deviations (0] Pi) and o‘,/ o N)) The average
1mportance scores for each input for each CI was compared to the
case of (1 : 1) with the Welch’s t-test [76]. The p-values from the
t-tests (p, (PN and p 7(P .n)) were combined with the method from
Stouffer et al. (Sg) [77 78], as outlined by Heard [79]. The p-values
are used to compare the null hypothesis (H,,), which states that there is
no statistically significant difference in the average importance scores,
against the alternative hypothesis (H,), which states that there is a
statistically significant difference in the average importance scores.
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The procedure for statistical comparison is outlined in Algorithms 1
and 2.

Algorithm 1 Statistical comparison of importance scores
Input: metric (f)
Output: p-values

1: Let comparison base case be importance scores of (1 : 1) imbalance

2: for imbalance levels (P : N) € {(1 : 2),(1 : 100),(1 : 1000)} do

3:  Calculate importance score values according to Algorithm 2
4 Letp (piny =TSy, ) 00 1 B ey T 0L i)

5 Let Pr, PNy = t—teSt(MIfP.(lzl) * O'pr,u:l); ”pr,(P:N) x O'Ifr(P:N))
6:  Combine p-values as pp.y) = S S(ptp, p fp)

7:  Add pp. y to list of p-values, p

8: end for

9: Return p

Algorithm 2 S’SA for a metric under CI
Input: metric (f), level of CI (P : N)

Output: Importance scores (Y] indices from

S’SA)

1: Define the domain for ¢, as P C [0, P]

2: Define the domain for f, as N C [0, N]

3: Sample SS from X =P x N

4: Evaluate F = f(x;), Vx; € X

5: Apply S’SA to (X, F)

6: Return means and standard deviations for importance scores, i.e.

Hi, 01, and Hip ®01,

Additionally, metric behaviour is quantified through the use of
contour plots. For each level of CI, the equally spaced points of ¢, €
{0,..., P} and f, € {0,... N} were used to calculate the metric out-
put, f(t,, f,)- Let y;p.n) Tepresent the metric output for input point
(tps fp)i € {0,...., P} x {0,...,N} from (P:N) imbalanced data. The
total deviation of the metric under (P: N) imbalance in comparison to
(1:1) imbalance is quantified by the sum of the absolute value of the
difference between each point, as

Z(P:N) = 2 |Yi,(1:1) —Yi,(P:N)|~

(ot )i
The greater the value of X ;. ), the less robust the metric is to (P: N)
imbalance.

7.2. Metric behaviour classification

After completion of the procedure in Section 7.1, the results from
the S’SA importance scores statistical comparison and the contour plot
deviations are used to classify metrics.

S’SA importance score classification. The classification based on S’SA
importance scores are made by comparing the importance scores (I,p
and pr) for (1 : 1) CI against the other levels of CI. Since metric
behaviour on a (1 : 1) balanced dataset represents the most trustworthy
behaviour of a metric, metric behaviour of other levels of CI are
compared against this base case. The average importance scores of each
level of CI are used to calculate a p-value, p,.;, which is used to accept
or reject Hy. When (p(;.; < 0.05) it indicates that H, is rejected, ie.
there is a statistically significant difference in the average importance
scores. Rejection of H;, indicates that a metric is not robust to that given
level of CI, since the behaviour of the metric deviates from behaviour of
the balanced case. Using this information, the S’SA importance scores
are used to classify metrics into one of five types as outlined in Table
3.

11
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Table 3

Types of metrics based on S’SA scores.
Type Description
Type 1 Py <005V i € {2,10,100, 1000}
Type 2 Py <005 ¥ i € {10,100, 1000}
Type 3 Py < 0.05 Vi € {100, 1000}
Type 4 Py <005 V i € (1000
Type 5 Py <005V ie ()

Table 4

Types of metrics based on contour plots.
Type Description
Type 1 S > 0V i € (2,10,100, 1000}
Type 2 S > 0 Y i € {10,100, 1000}
Type 3 Zq: >0V i € (100,1000)
Type 4 S > 0V i € {1000}
Type 5 Xy >0Vie}

Table 5

p-values for importance score comparisons.
Metric Pa:2) Pa:ioy P1:100) P12 1000y
A 0.0000 0.0000 0.0000 0.0000
v 0.0000 0.0000 0.0000 0.0000
B 1.0000 1.0000 1.0000 1.0000
F, 0.0000 0.0000 0.0000 0.0000
K 0.0000 0.0000 0.0000 0.0000
L 0.0000 0.0000 0.0000 0.0000
McCC 0.0000 0.0000 0.0000 0.0000
MK 0.0000 0.0000 0.0000 0.0000
FMI 0.0000 0.0000 0.0000 0.0000
OoP 0.0000 0.0000 0.0000 0.0000
MCC-F, 0.0000 0.0000 0.0000 0.0000
Ggg 0.9913 0.9550 0.8720 0.7989
IBA 0.9901 0.5113 0.9969 0.9540
v, 0.9988 1.0000 0.9973 0.9980
F, 0.9839 0.9867 0.9838 0.9700
K, 1.0000 1.0000 1.0000 1.0000
L, 1.0000 1.0000 1.0000 1.0000
MCC, 0.9948 0.9262 0.9994 0.9902
OP, 0.0000 0.0000 0.0000 0.0000
MCC-F, 0.9962 0.9875 0.9999 0.9952
App 0.0000 0.0000 0.0000 0.0000
Opr 0.0000 0.0000 0.0000 0.0000
Hgg 0.9359 0.9942 0.6421 0.9995
Qs 0.9858 0.9828 0.9779 0.9973

Contour plot deviation. The contour plots for the different levels of CI of
a metric are also used to classify the behaviour of the metric. Contour
plots which maintain uniform shapes and contours even under different
distributions of target feature values are seen as more robust to CI. The
five types of contour plot-based classes are summarised in Table 4.

8. Results and discussion

This section presents the results obtained from the described anal-
ysis method in Section 7. Detailed results are given in Appendix A
(Tables A.12, A.13, A.14, A.15 and A.16). These tables contain the
S’SA importance scores for 1, and £y for imbalances of (1:1), (1:2),
(1:10), (1:100) and (1:1000) respectively. The p-values which compare
the importance scores are given in Table 5. Table 6 classifies metrics
according to the schema defined in Table 3.

The deviations between contour plots are presented in Table 7. Ta-
ble 8 classifies each metric according to the categories of contour plots
presented in Table 4. The contour plots used to make the classifications
are given in Appendix B as Figs. B.3 to B.26. The visual representations
of the contour plots provide additional insight into how the behaviour
of metrics changes with increasingly extreme CI.

Table 6 shows that all evaluated metrics are classified as either Type
1 or Type 5. Type 1 metrics are greatly affected by CI as the ratios of
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Table 6 Table 9

S’SA-based classification of metric behaviour. Real-world dataset characteristics.
Type Metrics Name Instances Attributes Imbalance Reference
1 A, v, Fy, &, L, MCC, MK, FMI, OP, MCC-F|, Apg, Opr D, 284807 30 (1:577.88) [80]
2 D, 7200 21 (1:12.48) [811
3 D, 202599 39 (1:43.56) [82]
4 D, 41188 62 (1:7.87) (831
5 B, Ggs, IBA, v, F, &, L,, MCC,, OP,, MCC-F,, Hgg, Qgg Ds 299285 500 (1:15.12) [84]

Dy 37136 500 (1:1) [84]

Table 7

Contour plot cumulative deviation scores. Table 10
Metric Zu S0 Zi:100) S 1000 LR Hyperparameters.
A 561.11 1377.27 1650.0 1679.97 Hyperparameter Value
v 716.14 2253.96 3211.02 3393.73 Optimiser L-BFGS
B 0.0 0.0 0.0 0.0 Iterations 100
F 777.16 2791.69 4320.15 4652.12 Regularisation L,
K 214.03 971.47 1516.24 1644.29 Stopping tolerance 1074
L 1281.47 3515.86 4680.3 4878.56 Regularisation strength 1.0
MCC 100.73 573.63 1271.53 1594.01
MK 223.25 1023.3 1751.6 1903.28
FMI 713.56 2391.24 3917.76 4516.34 (shown by the robust metrics denoted with the subscript 1), and the
oP 280.56 688.64 825.0 839.99 L . o
MCC-F, 407.98 1599.66 2603.22 285158 non-robust metrics (i.e. many of the metrics popular in literature).
Ggs 0.0 0.0 0.0 0.0 The datasets included credit card fraud detection [80], thyroid
IBA 0.0 0.0 0.0 0.0 disease detection [81], celebrity attribute classification [82], bank
Vi 0.0 0.0 0.0 0.0 marketing success prediction [83], and income levels from census
:” g:g g:g g:g g:g data [84]. All six datasets were preprocessed as by Pang et al. in [85],
I 0.0 0.0 0.0 0.0 where missing values were imputed by the mean and categorical vari-
MCC 0.0 0.0 0.0 0.0 ables were one-hot encoded. The dataset files are available from Pang
OF, 0.0 0.0 0.0 0.0 et al. on GitHub.? Note that the sixth dataset, Dy, is simply Djs after ran-
MCC-F, 0.0 00 00 0.0 domly undersampling the majority class to achieve (1:1) class balance.
Apr 647.22 1763.79 2340.18 2437.69 . -
Orr 505.56 1422.57 1924.43 2013.31 Dataset Dy was created to compare metrics under balanced conditions.
Hgg 0.0 0.0 0.0 0.0 Table 9 outlines the dataset characteristics, i.e. the total number of
Oss 0.0 0.0 0.0 0.0 instances, the dimensionality of the data, the level of class imbalance,

and the source of the data.

Table 8 A simple ML model was trained on each of the six datasets. The

Contour plot classification of metric behaviour. purpose of this experiment was not to find the optimal ML model for
Type Metrics each problem, but to see how the interpretation of the aptness of each
1 A, v, F}, &, L, MCC, MK, FMI, OP, MCC-F,, Apg, Opr model changes as different metrics are used. The ML approach selected
2 for this task was LR due to its simplicity, ease of use, and relevance
i to binary classification. LR can be made more complex through the
5 B, Gss, IBA, v, F, x, L,, MCC,, OP, MCG-F, Hss, Qss use of basis functions, but this was not explored. For a history and

importance scores are dissimilar for all levels of CI. On the contrary,
Type 5 metrics maintain equivalent ratios for all levels of CI, which
indicates robustness to CI. There is a clear trend that the modified
metrics proposed in Section 6, as well as metrics which average the
sensitivity and specificity, are Type 5. The metrics popular in existing
literature from Section 5 are Type 1.

An analysis of Table 8 reveals similar trends to the trends in Table
6. All the analysed metrics are either Type 1 or Type 5. The newly
proposed metrics, as well as the averages between sensitivity and
specificity, are all Type 5.

It is clear that there are two dominant cases of robustness to CIL:
metrics which are robust, and metrics which are not. Robust metrics
include the metrics which were normalised using the method proposed
in Section 4, and metrics which average the TPR and TNR using one of
the four types of means. The majority of metrics which are popularly
used in literature are not robust to CI.

9. Metric behaviour on real-world datasets

This section bolsters the results seen in the importance score and
contour plot evaluation of Section 8. All existing and proposed metrics
presented in Sections 5 and 6 were evaluated on six real-world anomaly
detection datasets. The evaluation on these real-world datasets was
performed to show the discrepancy in the expected value of the results

12

background of LR, the reader is referred to [86]. The implementation
of LR used was from the popular Python package scikit-learn,®
optimised with the limited memory Broyden-Fletcher-Goldfarb-Shanno
algorithm (L-BFGS) [87], and used with the hyperparameters specified
in Table 10. In order to split the dataset into train and test sets,
stratified k-fold cross-validation was used. Due to the class imbalance,
stratified sampling was used to ensure that the proportions of each class
remained consistent across all train and test sets. Each dataset was split
into k = 5 folds, which resulted in a 80%/20% train-test split. For each
metric, the average values over each of the six tests sets were calculated
and are reported in Table 11

The real-world results echo the results seen in Section 8, in which
it is clear that many existing metrics deviate from the expected be-
haviour when applied to imbalanced learning. For example, accuracy
(A) clearly overestimates the aptness of the models on all datasets in
comparison to balanced accuracy (B). Similarly, even metrics which
are heralded as suitable for imbalanced learning (e.g. F|) do not show
consistent results. Table 11 shows that, other than for the thyroid
dataset, the values for F, do not match those of F,. Since F, was
shown to be insensitive to class imbalance, F, represents the expected
behaviour (i.e. F, behaves the same for all levels of class imbalance). If

2 https://github.com/GuansongPang/ADRepository-Anomaly-detection-
datasets/.
3 https://scikit-learn.org/stable/.
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Table 11 Table A.12
Real world dataset. Table of S’SA results 1:1 class imbalance.
Metric D, D, D; D, Dy D¢ Metric 1:1 imbalance
A 0.9991 0.9383 0.9781 0.9096 0.9529 0.8713 1, f »
v 0.5512 0.1778 0.1111 0.3274 0.3410 0.7766 " 0.502 001 0502 0.01 (1,00 1 1.00)
B 0.8058 0.5895 0.5598 0.6831 0.6914 0.8713 , 0.10 £ 0.00 0.86 4 0.01 (1,00 : 8.19)
F, 0.7096 0.3002 0.1999 0.4933 0.5086 0.8742 B 0.50 £ 0.01 0.50+ 0.01 (1,00 1.00)
K 0.8546 0.6417 0.5967 0.7237 0.7431 0.8713 F 0.08 4 0.00 0.91 001 (1001 11.78)
L 0.8366 0.8994 0.5584 0.6683 0.7210 0.8543 . 0.50 £ 0.01 0.50 £ 0.01 (1,00 1.00)
MCC 0.8594 0.6972 0.6269 0.7335 0.7555 0.8717 L 0.49 £ 0.01 049 £ 0,01 (1,00 1.00)
MK 0.9227 0.9392 0.7696 0.7977 0.8411 0.8721 MCC 0.50 £ 0.01 0,50+ 0.01 (1,00  1.00)
FMI 0.7192 0.4089 0.2608 0.5112 0.5323 0.8745 MK 0.49 0,01 0.49 £ 0.01 (1,00 : 1.00)
op 0.8788 0.6208 0.5978 0.7408 0.7605 0.9220 FMI 0.09 £ 0.00 0.90 £ 0.01 (100 : 9.67)
MCC-F, 0.7719 0.4608 0.3758 0.5951 0.6119 0.8730 op 0.39 001 039+ 0.01 (1,00 : 1.00)
Gss 0.7817 0.4211 0.3484 0.6173 0.6236 0.8709 MCGF, 0.24 £ 001 076 £ 0.01 (100  3.20)
B swa e omm o one o omw G
i IBA 0.19 +0.01 0.68 +0.01 (1.00 : 3.61)
F, 0.7583 0.3027 0.2167 0.5521 0.5600 0.8742 ), 0.10 4 0.00 0.86. 0.01 (100 : 8.19)
K, 0.8058 0.5895 0.5598 0.6831 0.6914 0.8713 F 0.08 1 0.00 0.91 £ 0.01 (100 ¢ 11.78)
L 0.8510 0.6226 0.5845 0.7274 0.7389 0.8655 . 0.50 £ 0.01 0.50 £ 0.01 (1,00 : 1.00)
MCC, 0.8319 0.6552 0.6239 0.7257 0.7386 0.8717 I 0.50 £ 001 0,50+ 0.01 (1,00 : 1.00)
or, 0.7822 0.4463 0.3887 0.6275 0.6298 0.9220 M, 0.50 £ 0.01 0.50 £ 0.01 (1,00 : 1.00)
MCCF, 0.7918 0.4499 0.3856 0.6286 0.6381 0.8730 op, 0.39 £ 0.01 039 40,01 (1,00 ¢ 1.00)
Arg g'gzzg 3'5392 8-332‘2‘ 8'5392 8'5222 8'2242 MCC-F, 0.24£0.01 0.76 £ 0.01 (1.00 : 3.20)
Opr .85 .747 .5 727 7 .935 :
Hyg 0.7584 0.3029 0.2170 0.5579 0.5625 0.8706 g: ’; 8;3 f ggg gz; f g‘gi E}gg . ;éi;
Oss 0.8976 0.7677 0.7482 0.8265 0.8315 0.9334 Hes 0.44 001 0.44.4 0.01 (1,00 : 1.00)
Oss 0.49 +0.01 0.49 +0.01 (1.00 : 1.00)
F, were also insensitive to class imbalance it is expected that F; would Table A.13
show similar results to F,, but this is not the case. Table of S’SA results 1:2 class imbalance.
The shortcomings of existing metrics is further demonstrated by the Metric 1:2 imbalance
results on Dg. The results for the balanced census dataset (Dg) show ‘) 7, »
that the behaviour of existing metrics do match the behaviour of the " 0.80 £ 0.01 0.20 2 0.00 (1.00 : 025)
modified metrics. For example, the accuracy (A) and balanced accuracy v 022 +0.01 0.70 +0.01 (1.00 : 3.18)
(B) are both 0.8713 on Dy. Similarly, both F; and F, are the same at B 0.50 +0.01 0.50 +0.01 (1.00 : 1.00)
0.8742. F 0.18 +0.01 0.79 +0.01 (1.00 : 4.42)
K 0.51 +0.01 0.49 +0.01 (1.00 : 0.97)
10. Conclusion and future work L 0.600.01 037001 (1.00: 0.62)
MCC 0.54 +0.01 0.46 +0.01 (1.00 : 0.86)
This paper provided an extensive review of the behaviour of perfor- FMI\;(I 8?2 f gg: 8'32 f 8‘81 Eigg : 2?2
mance evaluation metrics for classification problems under the influ- op 052+ 0.01 027+ 0.01 (100 : 051)
ence of different levels of CI. Multiple metrics from existing literature MCC-F, 0.32 +0.01 0.67 +0.01 (1.00 : 2.09)
were reviewed, with in-depth histories and justifications for the pro- Ggs 0.47 £ 0.01 0.47 +0.01 (1.00 : 1.00)
posals of these metrics presented. A normalisation-based technique for 1BA 0.19+0.01 0.68 +0.01 (1.00 : 3.61)
the creation of robust metrics from existing metrics was proposed, and Vi 0.10+0.00 086001 (1.00 : 8.19)
: . . - : F, 0.08 +0.00 0.91 +0.01 (1.00 : 11.78)
used to modify the reviewed metrics. Additionally, all reviewed and . 0.50 % 0,01 0,50+ 001 (00 1.00)
proposed metrics were analysed under different levels of CI using Sobol’ L 0.50 £ 0.01 0,50 0.01 (100 - 1.00)
sensitivity analysis (S’SA). MCC, 0.50 +0.01 0.50 +0.01 (1.00 : 1.00)
To the knowledge of the authors, this paper performed the first or, 0.39+0.01 0.39 +0.01 (1.00 : 1.00)
extensive variance-based global SA of classification metrics with re- MCC-F, 0.24£0.01 0.76 +0.01 (1.00 : 3.20)
gards to CI. This paper found that the majority of existing metrics were Apr 0.150.00 084001 (1,002 5.74)
o . . Opr 0.11 0.00 0.88 +0.01 (1.00 : 7.75)
sensitive to CI. This paper also found that the proposed normalisation Hox 044001 044001 (00 + 1.00)
technique resulted in metrics which are highly robust to CI. Oss 049 + 0,01 049 + 0.01 (1.00 : 1.00)

Overall, this paper shed light on the issue of CI in classification
problems, which has plagued researchers in fields like ML and diag-
nostics for decades. This paper also provided a potential solution to
many problems posed by CI through the creation of new, more robust
metrics.

This paper answered many questions about how binary classifica-
tion metrics behave under different levels of CI. Future studies on this
topic can include the sensitivity of multi-class classification metrics, the
sensitivity of metrics when used in conjunction with a specific learning
algorithm (e.g neural networks), and the sensitivity of metrics when
used on real-world datasets.
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Table A.14
Table of S’SA results 1:10 class imbalance.
Metric 1:10 imbalance
1, f» p
A 0.99 +0.01 0.01 +0.00 (1.00 : 0.01)
v 0.52 +0.01 0.30 +0.01 (1.00 : 0.57)
B 0.50 + 0.01 0.50 +0.01 (1.00 : 1.00)
F, 0.51+0.01 0.38 +0.01 (1.00 : 0.75)
K 0.61 +0.01 0.32+0.01 (1.00 : 0.53)
L 0.77 +0.02 0.16 +0.01 (1.00 : 0.21)
MCC 0.61 +0.01 0.38 +£0.01 (1.00 : 0.62)
MK 0.75 +0.01 0.22 +0.01 (1.00 : 0.30)
FMI 0.34 +0.01 0.59 +0.01 (1.00 : 1.73)
oP 0.68 +0.01 0.13+0.01 (1.00 : 0.19)
MCG-F, 0.55 +0.01 0.40 + 0.01 (1.00 : 0.73)
Ggs 0.47 +0.01 0.47 +0.01 (1.00 : 1.00)
I1BA 0.19 +0.01 0.68 +0.01 (1.00 : 3.61)
v, 0.10 + 0.00 0.86 + 0.01 (1.00 : 8.19)
F, 0.08 + 0.00 0.91 +0.01 (1.00 : 11.78)
K, 0.50 +0.01 0.50 +0.01 (1.00 : 1.00)
L, 0.50 + 0.01 0.50 +0.01 (1.00 : 1.00)
MCG, 0.50 + 0.01 0.50 + 0.01 (1.00 : 1.00)
or, 039 +0.01 0.39 +0.01 (1.00 : 1.00) Table A.16
MCC-F, 0.24 +0.01 0.76 + 0.01 (1.00 : 3.20) Table of S’SA results 1:1000 class imbalance.
Apg 0.14 +£0.01 0.85+0.01 (1.00 : 6.20) Metric 1:1000 imbalance
Opr 0.09 + 0.00 0.91 +0.01 (1.00 : 9.96) ; . B
Hgg 0.44 +0.01 0.44 +0.01 (1.00 : 1.00) ? u
Qs 0.49 +0.01 0.49 +0.01 (1.00 : 1.00) A 1.00 + 0.01 0.00 + 0.00 (1.00 : 0.00)
v 0.74 +0.11 0.01 +0.00 (1.00 : 0.02)
B 0.50 + 0.01 0.50 + 0.01 (1.00 : 1.00)
Table A.15 F, 0.78 + 0.09 0.02 + 0.01 (1.00 : 0.03)
Table of S’SA results 1:100 class imbalance. K 0.78 £ 0.09 0.02 +0.00 (1.00 : 0.02)
Metric 1100 imbalance L 0.86 +0.15 0.01 £ 0.00 (1.00 : 0.01)
MCC 0.70 + 0.03 0.20 + 0.01 (1.00 : 0.28)
i T P MK 0.86 + 0.09 0.01 £ 0.00 (1.00 : 0.02)
A 1.00 + 0.01 0.00 + 0.00 (1.00 : 0.00) FMI 0.61 +0.05 0.21 +£0.01 (1.00 : 0.35)
v 0.70 + 0.04 0.06 + 0.01 (1.00 : 0.09) opP 0.73 £0.01 0.10£0.01 (1.00 : 0.13)
B 0.50 + 0.01 0.50 + 0.01 (1.00 : 1.00) MCC-F, 0.76 +£ 0.07 0.08 +£0.01 (1.00 : 0.10)
F, 0.73 +0.03 0.09 + 0.01 (1.00 : 0.12) Ggs 0.47 +0.01 0.47+0.01 (1.00 : 1.00)
K 0.74 + 0.03 0.09 + 0.01 (1.00 : 0.12) I1BA 0.19+0.01 0.68 +0.01 (1.00 : 3.61)
L 0.84 + 0.05 0.04 + 0.00 (1.00 : 0.04) v, 0.10 + 0.00 0.86 +0.01 (1.00 : 8.19)
MCC 0.68 + 0.01 0.27 +0.01 (1.00 : 0.40) F, 0.08 + 0.00 0.91+0.01 (1.00 : 11.78)
MK 0.84 +0.03 0.07 +0.01 (1.00 : 0.08) K, 0.50 +0.01 0.50 +0.01 (1.00 : 1.00)
FMI 0.53 +0.02 0.34 +0.01 (1.00 : 0.65) L, 0.50+0.01 0.50 +0.01 (1.00 : 1.00)
op 0.73 +0.01 0.10 £ 0.01 (1.00 : 0.14) MCC, 0.50 +0.01 0.50 +0.01 (1.00 : 1.00)
MCC-F, 0.72 +0.03 0.16 +0.01 (1.00 : 0.22) OP, 0.39 +0.01 0.39+0.01 (1.00 : 1.00)
Ggs 0.47 +0.01 0.47 +0.01 (1.00 : 1.00) MCC-F, 0.24 +0.01 0.76 + 0.01 (1.00 : 3.20)
1BA 0.19 +£0.01 0.68 +0.01 (1.00 : 3.61) Apr 0.01 +£0.00 0.99 £0.01 (1.00 : 203.99)
v, 0.10 + 0.00 0.86 +0.01 (1.00 : 8.19) Opr 0.00 £ 0.00 1.00 +0.01 (1.00 : 378.54)
F, 0.08 + 0.00 0.91 +0.01 (1.00 : 11.78) Hgg 0.44 +0.01 0.44 +0.01 (1.00 : 1.00)
K, 0.50 £ 0.01 0.50 + 0.01 (1.00 : 1.00) Oss 0.49 £0.01 0.49 +0.01 (1.00 : 1.00)
L, 0.50 + 0.01 0.50 +0.01 (1.00 : 1.00)
MCC, 0.50 + 0.01 0.50 +0.01 (1.00 : 1.00)
OP, 0.39 +0.01 0.39 +0.01 (1.00 : 1.00)
MCC-F, 0.24 +0.01 0.76 + 0.01 (1.00 : 3.20)
Apr 0.04 + 0.00 0.96 + 0.01 (1.00 : 25.12)
Opr 0.02 + 0.00 0.98 +0.01 (1.00 : 45.16)
Hgg 0.44 +0.01 0.44 +0.01 (1.00 : 1.00)
O 0.49 + 0.01 0.49 +0.01 (1.00 : 1.00)

Appendix A. S’SA importance scores

This appendix provides the importance scores from the S’SA evalu-
ations in tabular form. The importance scores for the true positive and
false positive (I,p and I,p) input variables are provided, as well as the
ratio between these scores. Importance scores are calculated as outlined
in Section 7.

Appendix B. Contour plots
This appendix provides the contour plots for each of the evaluated

metrics under the different levels of CI. The contour plots are generated
by plotting the ranges of function values at different coordinates.
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Fig. B.3. Contour plots of A behaviour under CI.
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Fig. B.4. Contour plots of v behaviour under CIL
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Fig. B.5. Contour plots of B behaviour under CI.
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