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Abstract

This paper expands the Mallows model for use in combinatorial domains. The Mallows
model is a popular distribution used to sample permutations around a central tendency
but requires a unique normalizing constant for each distance metric used in order to be
computationally efficient. In this paper, closed-form expressions for the Mallows model
normalizing constant are derived for the Hamming distance, symmetric difference, and
the similarity coefficient in combinatorial domains. Additionally, closed-form expressions
are derived for the normalizing constant of the weighted Mallows model in combinatorial
domains. The weighted Mallows model increases the versatility of the Mallows model by
allowing granular control over likelihoods of individual components in the domain. The
derivation of the closed-form expression results in a reduction of the order of calculations
required to calculate probabilities from exponential to constant.

Keywords: combinatorial; Mallows model; normalizing constant; weighted Mallows model
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1. Introduction
Permutation and combination spaces are an integral part of the foundations of mathe-

matics and have been studied for centuries. Berge provides excellent explanations of the
intricacies of combinatorial counting problems, permutation groups, and the set theory
which underpins these issues [1]. Additionally, Biggs outlines the history of the study of
combinations and permutations, dating back to the ancient Greek and Hindu historians,
which highlights the influence that this field has had on mathematics [2].

Permutations are not simply an ancient concept confined to old texts but are still a
relevant and actively studied part of the contemporary literature, e.g., see [3]. The issue of
sampling random permutations famously became a contentious issue during the conscrip-
tion of United States citizens by executive order of president Nixon [4]. The randomness of
the sampled conscription dates was questioned by Fienberg [5], who found that conscrip-
tion ranks were correlated with birthdates with a Spearman rank correlation coefficient
of −0.226. The “non-random” randomly sampled permutation of dates highlights the
challenge of creating a distribution defined on a permutation domain.
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Closely related to permutations are combinations, which are non-repeated unordered
collections of discrete objects. Hall and Knuth emphasize the increased attention com-
binatorial problems have gained since the advent of computers and how computational
complexity remains one of the limiting factors for combinatorial problems [6]. Papadim-
itriou and Steiglitz further illustrate the immense scale and ubiquity of combinatorial
optimization problems (COPs) [7]. The high level of difficulty of COPs is not surprising,
since COPs are often underpinned by non-deterministic polynomial time (NP)-hard de-
cision problems. This NP-hardness, combined with the combinatorial explosion of the
search space of COPs, necessitates highly specialized control of the exploration–exploitation
trade-off in combinatorial optimization algorithms (COAs). Often there are high levels
of exploration required, which are emphasized by new “combinatorial pure exploration”
approaches in multi-armed bandit algorithms [8].

The normalizing constant, sometimes referred to as the partition function in physics,
is an integral part of the definition of a statistical distribution. The normalizing constant
ensures that the probability density function (PDF) of a distribution is valid and that the
area under the curve of the PDF is one. For many models, a normalizing constant without
a closed-form expression results in a doubly intractable problem; a popular example of a
doubly intractable sampling problem is in exponential random graph models (ERGMs) for
social networks [9]. As a result of the intractablity of this class of problems, authors in the
contemporary literature have proposed approximation approaches to sample from doubly
intractable distributions, e.g., Monte Carlo Metropolis–Hastings (MCMH) [10] and Markov
chain Monte Carlo (MCMC) [11].

The Mallows model (MM) [12] is a popular distribution used to model permutations;
however, no research has been conducted on the adaptation of the MM for combinations.
This paper derives the closed-form expression for the normalizing constant of the MM with
different combinatorial discrepancy functions. The contribution of this paper allows the
MM to be applied to combinatorial problems with better computational efficiency.

2. The Mallows Model
In a seminal 1957 paper, Mallows proposed the MM as a popular distribution for

ranked data [12]. Mallows started with a general non-null model to calculate the probability
of putting two objects Ui and Uj in the correct order. The probability of correctly ordering
two objects is formulated as

P =
1
2
+

1
2

tanh(k log θ + log ϕ), (1)

where tanh is the hyperbolic tangent function, k = j − i is the discrepancy between the true
ranks of the two objects, and θ and ϕ are model parameters.

The parameters ϕ and θ change the behavior of the model, with ϕ closely associated
with the Spearman’s ρ [13], while θ is associated with Kendall’s τ [14]. These two param-
eters can be varied in order to change two different effects. Firstly, the parameter θ is
interpreted as the weights assigned to each of the n objects in the ordering, i.e., the level of
importance assigned to a correct ordering in each position. Secondly, the parameter ϕ is
interpreted as the probabilities that will be assigned to a newly ranked object, i.e., if (n − 1)
objects have been ranked, and an additional object is introduced. Both the weights from θ

and the probabilities from ϕ follow a geometric progression, decreasing away from the true
position in the ordering.

The model parameters can be varied to obtain different behaviors, with the null
hypothesis corresponding to θ = ϕ = 1. An additional behavior is obtained when ϕ = 1,
in which case the MM gives a special case of the Bradley–Terry model [15]. When θ = 1,
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the joint distribution of ρ and τ asymptotically tends to the bivariate normal form, which
makes the two parameters indistinguishable.

Definition 1. Let πi ∈ Ω be an arbitrary permutation of length n. Then,

P(π|π0, θ) =
1

Ψ(θ, π0)
e−θd(π,π0), (2)

where Ψ(θ, π0) is the normalizing constant, π0 is the central tendency, θ is the dispersion parameter,
and d(·, ·) is the discrepancy function. When θ > 0, π0 is the mode of the distribution; when θ < 0,
π0 is the antimode; and when θ = 0, the distribution is uniform.

Definition 2. The explicit formulation of the normalizing constant of the MM is

Ψ(π0, θ) = ∑
πi∈Ω

e−θd(π0,πi), (3)

where Ω is the permutation space.

The explicit form of the normalizing constant in Equation (3) is valid for any d(·, ·),
but is computationally expensive to calculate. The calculation time complexity is O(n!)
for permutation spaces and O(2n) for combinatorial domains. Therefore, closed-form
expressions for the normalizing constant, which do not require the summation over all
possible permutations in Ω, are required to make the MM computationally feasible. The
issue of computational complexity can be circumvented by the definition of a closed-form
expression which is independent of the modal tendency. A closed-form expression of
the normalizing constant, Ψ(θ), depends on only the dispersion parameter and is often
calculable in O(n). However, Ψ(θ) is discrepancy-function-specific, with no general form,
and so has to be derived for each new d(·, ·).

3. Discrepancy Functions
3.1. Permutation Discrepancy Functions

The original MM was defined with two variations (i.e., Mallows’ ϕ and Mallows’ θ),
which correspond to the use of Kendall’s τ and Spearman’s ρ, respectively. However,
Diaconis proposed that any right-invariant discrepancy metric can be used with the MM
and outlined six existing metrics which are compatible [16].

Kendall proposed a “measure of rank correlation”, named τ which measures the
number of discordant pairs between two permutations [14]. Practically, Kendall’s τ counts
the number of inversions required to transform two permutations to be alike. The distance
measure based on τ is

dτ(π, σ) =
2Σ

n(n − 1)
, (4)

where Σ = |{(i, j) ∈ Ω × Ω : i < j ∧ π(i) > σ(j)}| is the inversion number, i.e., the number
of inversions needed to transform π into σ. The closed-form expression for Kendall’s τ was
derived by Fligner and Verducci as Ψ(θ) = ∏n−1

j=1
1−e−θ(n−j+1)

1−e−θ [17].
Spearman’s correlation coefficient, alternatively named Spearman’s ρ, was proposed

by [13]. Spearman’s ρ is a non-parametric measure of correlation between the rankings
of two variables and is used to measure the discrepancy between permutations. Closely
related to ρ is Spearman’s footrule [18], which was introduced as an alternative to Spear-
man’s correlation coefficient and can be used with the MM. The ρ-based distance measure
for permutations is defined as
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dρ(π, σ) =
n

∑
j=1

(π(j)− σ(j))2. (5)

No known closed-form expression for Ψ(θ) with the correlation coefficient distance exists.
Hamming developed a system to detect and correct errors on digital computers, a

system which relies heavily on the calculation of a distance between binary vectors [19].
The distance chosen by Hamming is equivalent to the complement of logical and (∧) of
binary vectors, and is referred to as the Hamming distance. The Hamming distance is a
count of the number of positions for which the symbols of two permutations differ:

dH(π, σ) = n −
n

∑
j=1

δπ(j),σ(j) (6)

Fligner and Verducci derived the closed-form expression for the normalizing constant with

the Hamming distance as Ψ(θ) = n!enθ ∑n
j=0

(e−θ−1)j

j! [17].
The Ulam distance is the minimum number of insertions and deletions required to

transform one permutation to another and is the permutation edit distance [20]. The
Ulam distance is a specific case of the generalized Levenshtein edit distance from [21].
Alternatively, the Ulam distance can be thought of as the complement of the longest
increasing subsequence of a permutation as follows:

dU(π, σ) = n−max
k

{{π ◦ σ−1(i1), . . . , π ◦ σ−1(ik)} | π ◦ σ−1(i1) < · · · < π ◦ σ−1(ik)}. (7)

There is no additive decomposition form for the Ulam distance. Therefore, Irurozki defined
an alternative formula for the normalizing constant as Ψ(θ) = ∑n

d=0 Su(n, d)e−θd, where
Su(n, d) is the number of permutations at distance d from the identity [22].

Cayley proposed the distance which counts the minimum number of transpositions
required to change a permutation π into σ [23]. The minimum number of transpositions
can be calculated as the complement of the number of cycles in the composition of the two
permutations which are compared. The resulting formula for the distance is

dC(π, σ) = n − |{{i1, . . . , ik} ⊆ {1, . . . , n} | π ◦ σ−1(ij) = i(j+1) mod k}|. (8)

The initial closed-form expression for the Cayley distance was given by Fligner and
Verducci [17], with errors corrected by Irurozki [22]. The resulting expression is
Ψ(θ) = ∏n−1

j=1 ((n − j)e−θ + 1).

3.2. Combinatorial Discrepancy Functions

Combinatorial discrepancy functions calculate the dissimilarity between sets within
the defined universal set of elements, κ, η ⊆ U, with |U| = n. Unlike discrepancy functions
on permutation domains, combinatorial discrepancy functions do not account for the
ordering of elements.

Although the Hamming distance was originally developed for binary vectors, and is
popularly applied to permutations, it is also used for sets. The Hamming distance in set
notation makes use of the intersection operation, instead of the logical and, which results in

dH(κ, η) = n − |κ ∩ η|. (9)

The Jaccard distance is one of the most popular set-based distance measures proposed
by botanist Jaccard [24]. The Jaccard index was originally developed to measure the amount
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of diversity of plant species in different plots of land, with the Jaccard distance defined as
the complement of the Jaccard index. The Jaccard distance is

dJ(κ, η) = 1 − |κ ∩ η|
|κ ∪ η| . (10)

Similarity-coefficient-based distance metrics are popular in the existing literature.
Similarity coefficients measure the amount of agreement (in present attributes and non-
present attributes) between two sets. Matching coefficient (MC) is a term often used to
describe similarity coefficients related to the Rand index [25] or the coefficients attributed
to either Goodall [26] or Sokal and Michener [27]. MCs are often normalized to the range
[0, 1], with a corresponding distance metric defined as the complement of the coefficient.
The generally used form of similarity-coefficient-based distances is

dM(κ, η) =
|κ ∩ η|+ |κc ∩ ηc|

n
. (11)

A simple measure of dissimilarity which can be used for sets is the count of the number
of insertions and deletions required to transform set A to set B. The count of insertions
and deletions is simply the symmetric difference between two sets, denoted by ∆, which is
formulated as

dS(κ, η) = |η\κ|+ |κ\η| = |κ∆η|. (12)

The symmetric difference is closely related to the Jaccard distance, since the Jaccard distance
is equivalent to |A∆B|

|A∪B| .

4. Normalizing Constant for Combinatorial Domains
Fligner and Verducci outline a process by which the closed-form expression of the

normalizing constant can be derived, representing the distance to the central tendency
as a random variable ν [17]. The moment-generating function (MGF) of the distribution
over ν, D(ν), is calculated under assumed conditions of uniformity over the input domain.
The Taylor series expansion of the additive decomposition of the discrepancy measure is
then substituted into the MGF of D(ν), which results in the closed-form expression for the
normalizing constant.

The MGF of a discrepancy function as a random variable is given in Definition 3.

Definition 3. Let D(ν) be the distance of an arbitrary combination to the central tendency expressed
as a random variable.

MGF(D(ν)) := MD,θ(t) (13)

Given the condition θ = 0, the following shorthand notation is defined:

MD,0(t) = M(t) (14)

and
P(D(ν) = d|θ = 0) = P0(d) (15)

Under the assumption of uniformity, the normalizing constant can be expressed using
the MGF of D(ν) as in Lemma (1).

Lemma 1. The normalizing constant, under the assumption of uniformity, is related to the MGF by

Ψ(θ) = 2n M(−θ) (16)
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Proof.

Ψ(θ) = ∑
π∈Ω

e−θd(π,π0)

= 2n ∑
di=d(π,π0)

π∈Ω

P0(di)e−θdi

= 2n M(−θ)

(17)

The exponential tilting, as first defined in [28], of the MM is given in Definition 4.

Definition 4. Since MM is an exponential family, the MGF of D(ν) with the MM is

MD,θ =
M(t − θ)

M(−θ)
(18)

According to Fligner and Verducci, the expected value and variance of D(ν) was
derived through direct argument by Lehman [29] and is given in Definition 5.

Definition 5. The expected value of D(ν) is

Eθ [D(ν)] =
d
dt

log(M(t))
∣∣∣
t=−θ

(19)

and the variance of D(ν) is

Varθ [D(ν)] =
d2

dt2 log(M(t))
∣∣∣
t=−θ

(20)

Consider an appropriate discrepancy function, d(·, ·), and a combination, κ, (for
distinguishing nomenclature, permutations are referenced by π and combinations by κ).
The distance from κ to the central tendency, κ0, can then be defined element-wise as in
Definition 6.

Definition 6. The element-wise representation of a discrepancy function between a combination κ

and a central tendency κ0 is captured by the quantity ϵi as

ϵi(κ) =

1 if κ(i) ◦ κ0(i),

0 otherwise,
(21)

where ◦ is a dyadic operator for element-wise comparison and κ(i) is an element within the combi-
nation of κ.

The element-wise representation of the discrepancy function in Equation (21) can then
be used to define the additive decomposition of d(κ, κ0) = d(κ), given in Definition 7.

Definition 7. The additive decomposition of a discrepancy function is

d(κ) = g(X(κ)) (22)

with

X(κ) =
n

∑
i=1

ϵi(κ), (23)
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where g is a function which transforms X(κ) if needed (e.g., linear transform, translation, or identity).

Definition 8. Assume that κ is uniformly distributed over Ω; define a function f such that

f (t) = E
[
tX
]

(24)

where, for brevity, X is the distance of a sampled combination to the central tendency.

Definition 9. The jth derivative of f (t) evaluated at t = 1 is

f (j)(1) = E
[

X!
(X − j)!

]
, (25)

Proof. From the power rule

d
dt

f (t) = E
[

X · t(X−1)
]
, (26)

which after repeated application becomes

dj

dtj f (t) = E
[

X · . . . · (X − j) · t(X−j)
]
. (27)

When evaluated at t = 1, Equation (27) results in

dj

dtj f (1) = E
[

X · . . . · (X − j) · 1(X−j)
]

= E
[

X!
(X − j)!

]
.

(28)

Lemma 2. From the definition of f and f (j), the Taylor series expansion of f (t) at t = 1 is

f (t) =
(

t − 1
2

+ 1
)n

. (29)

Proof. The nth degree Taylor series expansion of f (t) around t = 1 is

f (t) =
n

∑
j=0

f (j)(1)
j!

(t − 1)j. (30)

From Definition 9,

f (t) =
n

∑
j=0

E
[

X!
(X−j)!

]
j!

(t − 1)j

=
n

∑
j=0

E
[

X!
j!(X − j)!

]
(t − 1)j

=
n

∑
j=0

E
[
(X

j )
]
(t − 1)j

(31)

where the binomial coefficient (X
j ) is zero when X < j. The binomial coefficient can also be

redefined as

(X
j ) = ∑

Aj

ϵi1 · . . . · ϵij (32)
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where Aj = {S ⊆ Ω | |S| = j}. Consequently,

E
[
(X

j )
]
= ∑

Aj

E
[
ϵi1 · . . . · ϵij

]
=

(n
j)

2j . (33)

Hence,

f (t) =
n

∑
j=0

E
[
(X

j )
]
(t − 1)j

=
n

∑
j=0

(n
j)

2j (t − 1)j

=
n

∑
j=0

(
n
j

)(
t − 1

2

)j
.

(34)

Finally, from the binomial theorem of (x + y)n = ∑n
j=0 (

n
j)xjyn−j with the substitution of

x = t−1
2 and y = 1, the result is

f (t) =
n

∑
j=0

(
n
j

)(
t − 1

2

)j

=

(
t − 1

2
+ 1
)n

.

(35)

4.1. Normalizing Constant with the Hamming Distance

This section proves the existence of a closed-form expression for the normalizing
constant of the MM with the Hamming distance.

Theorem 1. The closed-form expression of the MM normalizing constant with the Hamming
distance is

Ψ(θ) =
(

e−θ + 1
)n

(36)

Proof. Let the element-wise representation of the Hamming distance between two combi-
nation be defined using the equality operator (=) as

ϵi(κ) =

1 if κ(i) = κ0(i),

0 otherwise,
(37)

The additive decomposition of the Hamming distance is then defined with the transform
function gH(x) = n − x, i.e.,

dH(κ) = n − X(κ). (38)

The MGF of D(ν) with the Hamming distance and the assumption of uniformity is

M(t) = E
[
e(n−X)t

]
= ent f (e−t) = ent

(
e−t − 1

2
+ 1
)n

. (39)

From Lemmas (1) and (2), the closed-form expression for the normalizing constant with the
Hamming discrepancy function is
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Ψ(θ) = 2ne−θn
(

eθ − 1
2

+ 1
)n

=
(

e−θ + 1
)n

.

(40)

4.2. Normalizing Constant with the Symmetric Difference

This section proves the existence of a closed-form expression for the normalizing
constant of the MM with the symmetric difference.

Theorem 2. The closed-form expression of the MM normalizing constant with the symmetric
difference is

Ψ(θ) =
(

e−θ + 1
)n

(41)

Proof. Let the element-wise representation of the symmetric difference between two com-
bination be defined in terms of the logical exclusive or (⊕) as

ϵi(κ) =

1 if κ(i)⊕ κ0(i),

0 otherwise.
(42)

The additive decomposition of the symmetric difference is then defined with the transform
function gS(x) = x, i.e.,

dS(κ) = X(κ) (43)

The MGF of D(ν) with the symmetric difference and the assumption of uniformity is

M(t) = E
[
eXt
]
= f (e−t) =

(
e−t − 1

2
+ 1
)n

. (44)

From Lemmas (1) and (2), the closed-form expression for the normalizing constant with the
symmetric difference discrepancy function is

Ψ(θ) = 2n
(

e−θ − 1
2

+ 1
)n

=
(

e−θ + 1
)n

.

(45)

The cardinality of the symmetric difference between two combinations, |κ∆η|, is
equivalent to the Hamming distance between κ and η. Therefore, Equations (40) and (45)
are equivalent despite the difference in Boolean operator used to define the distance metrics.

4.3. Normalizing Constant with the Similarity Coefficient Distance

This section proves the existence of a closed-form expression for the normalizing
constant of the MM with the similarity coefficient.

Theorem 3. The closed-form expression of the MM normalizing constant with the similarity
coefficient is

Ψ(θ) =
(

e−
θ
n + 1

)n
(46)
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Proof. Let the element-wise representation of the similarity coefficient distance be defined
in terms of the negation of the logical exclusive or (⊙) as

ϵi(κ) =

1 if κ(i)⊙ κ0(i),

0 otherwise.
(47)

The additive decomposition of the symmetric difference is then defined with the transform
function gM(x) = x

n , i.e.,

dM(κ) =
X(κ)

n
(48)

The MGF of D(ν) with the similarity coefficient and the assumption of uniformity is

M(t) = E
[
eXt
]
= f (e−

t
n ) =

(
e−

t
n − 1
2

+ 1

)n

. (49)

From Lemmas (1) and (2), the closed-form expression for the normalizing constant with the
similarity coefficient discrepancy function is

Ψ(θ) = 2n

(
e−

θ
n − 1
2

+ 1

)n

=
(

e−
θ
n + 1

)n
.

(50)

5. Weighted Mallows Model for Combinatorial Domains
Fligner and Verducci proposed an extension of the MM, the generalized Mallows

model (GMM) [17]. The GMM has n − 1 dispersion parameters (i.e., θj with 1 ≤ j < n),
which are each used to influence the probability of a specific position within a sampled
permutation. Irurozki proposed the weighted Mallows model (WMM) extension of the MM
with the Hamming distance for permutation problems [22]. Since the decomposition vector
of the Hamming distance has n terms instead of n − 1 terms, the GMM of the Hamming
distance does not exist.

The WMM can be constructed for combination spaces as well. The WMM is used to
control the likelihood of specific elements being included in the combinations sampled
around the central tendency. In other words, the WMM can sample combinations, given a
central tendency and collection of dispersion parameters, and take into account different
levels of preference for the inclusion of each element ei ∈ U.

Definition 10. Let the element-wise distance vector be

D(κ) = (D1(κ, κ0), . . . , Dn(κ, κ0)), (51)

where Dj(κ, κ0) = 0 if κ(i) ◦ κ0(i) and 1 otherwise (i.e., D(κ) is a vector of discrepancy function
components defined using the dyadic operator ◦). It follows that d(κ, κ0) = ∑n

j=1 Dj(κ).

Definition 11. Define a vector

ϵ(κ) = (ϵ1(κ), . . . , ϵn(κ)) (52)

with ϵ(κ) = g(D(κ)) (i.e., each ϵj(κ) = g(Dj(κ))) where g is a function which transforms
Dj(κ) if needed (e.g., linear transform, translation, or identity). When κ is sampled uniformly,
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ϵ(κ) is a random binary vector; therefore, the probability of sampling κ with a distance vector ϵ is
P0(ϵ(κ) = ϵ).

Lemma 3. The normalizing constant, under the assumption of uniformity, is related to the MGF by

Ψ(θ) = 2n Mϵ(θ) (53)

Proof. The normalizing constant can be defined as a function of the MGF of a random
vector X-associated MGF, MX(t) = E

[
∏n

j=1 etjXj
]
. Let

Ψ(θ) = 2n ∑
D∈Bn

P0(D(κ) = D)e−∑n
j=1 θjDj(κ)

= 2n ∑
g(D)∈Bn

P0(g(D))e−∑n
j=1 θjg(Dj)

= 2n ∑
ϵ∈Bn

P0(ϵ)e
−∑n

j=1 θjϵj

= 2n Mϵ(θ).

(54)

Definition 12. Assume that κ is uniformly distributed over Ω, define a function f similarly to the
process in [17] as

fϵ(t) = fϵ(t1, . . . , tn) = E
[
tϵ1
1 · · · tϵn

n
]

(55)

Lemma 4. The Taylor series expansion of fϵ(t) at t = 1 is

f (t) =
n

∏
j=1

(
ti + 1

2

)
(56)

Proof. The multivariate Taylor series expansion of f (t) around t = 1 is

f (t) =
∞

∑
j=0

1
j! ∑

x1+···+xn=j

(
j

x1 · · · xn

)
∂j f

∂tx1
1 · · · ∂txn

n

∣∣∣∣
t=1

(t1 − 1)x1 · · · (tn − 1)xn ; (57)

while the derivative of fϵ with respect to variable ti is given as

∂ fϵ

∂ti
= ∑

ϵ

P0(ϵ)t
ϵ1
1 · · · ϵit

ϵi−1
i · · · tϵn

n

=

 ∑
ϵ|ϵi=0

P0(ϵ)t
ϵ1
1 · · · 0 · t0−1

i · · · tϵn
n

+

 ∑
ϵ|ϵi=1

P0(ϵ)t
ϵ1
1 · · · 1 · t1−1

i · · · tϵn
n


= 0 + ∑

ϵ|ϵi=1
P0(ϵ)∏

j ̸=i
t
ϵj
j ,

(58)

which evaluated at t = (1, . . . , 1) is

∂ fϵ

∂ti

∣∣∣∣
t=1

= ∑
ϵ|ϵi=1

P0(ϵ)1ϵ1 · · · 1 · 11−1 · · · 1ϵn

= ∑
ϵ|ϵi=1

P0(ϵ).
(59)
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Equation (59) is simply the probability of sampling a combination uniformly given that
element i is included in the combination, i.e.,

∑
ϵ|ϵi=1

P0(ϵ) =
2n−1

2n . (60)

The second-order partial derivation with respect to the same variable ti is zero, i.e.,

∂2 f
∂t2

i
= 0. (61)

However, the second-order cross partial derivative with respect to two different variables
ti1 and ti2 is

∂ fϵ

∂ti1 ∂ti2

∣∣∣∣
t=1

= ∑
ϵ|ϵi1

=1,ϵi2=1
P0(ϵ)1ϵ1 · · · 1 · 11−1 · · · 1 · 11−1 · · · 1ϵn

= ∑
ϵ|ϵi1

=1,ϵi2=1
P0(ϵ),

(62)

which is the probability of sampling a combination uniformly given that elements i1 and i2
are included in the combination, i.e.,

∑
ϵ|ϵi1

=1,ϵi2=1
P0(ϵ) =

2n−2

2n . (63)

In general, the k-th-order cross partial derivative evaluated at t = 1 is

∂k f
∂ti1 · · · ∂tik

∣∣∣∣
t=1

=
2n−k

2n =
1
2k (64)

With the underlying assumptions ( j
ϵ1···ϵn

) = j! ∵ ϵ ∈ Bn, and j ≤ n ∵ ∂j f

∂tj
i

= 0 ∀ j > 1, the

Taylor series expansion becomes

fϵ(t) =
n

∑
j=0

1
j! ∑

Aj

(
j

ϵi1 · · · ϵin

)
∂j f

∂ti1 · · · ∂tij

∣∣∣∣
t=1

j

∏
s=1

(tis − 1)

=
n

∑
j=0

1
j! ∑

Aj

j!
2j

j

∏
s=1

(tis − 1)

=
n

∑
j=0

1
2j ∑

Aj

j

∏
s=1

(tis − 1)

=
n

∑
j=0

1
2j ej((t1 − 1), . . . , (tn − 1))

(65)

where ej((t1 − 1), . . . , (tn − 1)) is the elementary symmetric polynomial (ESP) of degree j
and Aj = {S ⊆ Ω | |S| = j}. The sequence of the ESP has a generating function of the form

n

∏
j=1

(
1 + xj · a

)
=

n

∑
j=0

aj · ej(x1, . . . , xn) (66)
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which can be used to represent the weighted sum of the ESPs as

n

∑
j=0

(
1
2

)j
ej(x1, . . . , xn) =

n

∏
j=1

(
1 + xj ·

1
2

)
(67)

Hence,

f (t) =
n

∏
j=1

(
ti + 1

2

)
(68)

5.1. Weighted Mallows Model Normalizing Constant with the Hamming Distance

This section proves the existence of a closed-form expression for the normalizing
constant of the WMM with the Hamming distance.

Theorem 4. The closed-form expression of the WMM normalizing constant with the Hamming
distance is

Ψ(θ) =
n

∏
j=1

(
e−θj + 1

)
. (69)

Proof. Let the element-wise distance vector be H(κ) = (H1(κ, κ0), . . . , Hn(κ, κ0)) where
Hj(κ, κ0) = 1 if κ(i) = κ0(i) and 0 otherwise (i.e., a vector of Hamming distance compo-
nents). It follows that

dH(κ, κ0) =
n

∑
j=1

Hj(κ) (70)

Define the vector ϵ(κ) using the function gH(x) = 1 − x,

ϵ(κ) = gH(H) = (gH(H1(κ)), . . . , gH(Hn(κ))) = (1 − H1(κ), . . . , 1 − Hn(κ)) (71)

The MGF parameterized by ϵ is

Mϵ(θ) = MgH(H)(θ)

= M(1−H)(θ)

= e−∑n
j=1 θj fϵ(eθ)

= e−∑n
j=1 θj

n

∏
j=1

(
1 + e−θj

2

) (72)

which, from Lemmas (3) and (4), results in the closed-form expression for the normalizing
constant of the WMM with the Hamming distance as

Ψ(θ) = 2ne−∑n
j=1 θj

n

∏
j=1

(
1 + eθj

2

)

=
n

∏
j=1

(
e−θj + 1

)
.

(73)

5.2. Weighted Mallows Model Normalizing Constant with the Symmetric Difference

This section proves the existence of a closed-form expression for the normalizing
constant of the WMM with the symmetric difference.
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Theorem 5. The closed-form expression of the WMM normalizing constant with the symmetric
difference is

Ψ(θ) =
n

∏
j=1

(
e−θj + 1

)
. (74)

Proof. Let the element-wise distance vector be S(κ) = (S1(κ, κ0), . . . , Sn(κ, κ0)) where
Sj(κ, κ0) = 1 if κ(i)⊕ κ0(i) and 0 otherwise (i.e., a vector of symmetric difference compo-
nents). It follows that

dS(κ, κ0) =
n

∑
j=1

Sj(κ) (75)

Define the vector ϵ(κ) using the function gS(x) = x,

ϵ(κ) = gS(S) = (gS(S1(κ)), . . . , gS(Sn(κ))) = (S1(κ), . . . , Sn(κ)) (76)

The MGF parameterized by ϵ is

Mϵ(θ) = MgS(S)(θ)

= MS(θ)

= fϵ(eθ)

=
n

∏
j=1

(
1 + e−θj

2

) (77)

which, from Lemmas (3) and (4), results in the closed-form expression for the normalizing
constant of the WMM with the symmetric difference as

Ψ(θ) = 2n
n

∏
j=1

(
1 + e−θj

2

)

=
n

∏
j=1

(
e−θj + 1

)
.

(78)

5.3. Weighted Mallows Model Normalizing Constant with the Similarity Coefficient Distance

This section proves the existence of a closed-form expression for the normalizing
constant of the WMM with the similarity coefficient.

Theorem 6. The closed-form expression of the WMM normalizing constant with the similarity
coefficient is

Ψ(θ) =
n

∏
j=1

(
e−

θj
n + 1

)
. (79)

Proof. Let the element-wise distance vector be M(κ) = (M1(κ, κ0), . . . , Mn(κ, κ0)) where
Mj(κ, κ0) =

1
n if κ(i)⊙ κ0(i) and 0 otherwise (i.e., a vector of similarity coefficient compo-

nents). It follows that

dM(κ, κ0) =
n

∑
j=1

Mj(κ) (80)
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Define the vector ϵ(κ) using the function gM(x) = x
n ,

ϵ(κ) = gM(M) = (gM(M1(κ)), . . . , gM(Mn(κ))) = (
M1(κ)

n
, . . . ,

Mn(κ)

n
) (81)

The MGF parameterized by ϵ is

Mϵ(θ) = MgM(M)(θ)

= M M
n
(θ)

= fϵ(eθ)

=
n

∏
j=1

1 + e−
θj
n

2


(82)

which, from Lemmas (3) and (4), results in the closed-form expression for the normalizing
constant of the WMM with the similarity coefficient as

Ψ(θ) = 2n
n

∏
j=1

1 + e−
θj
n

2


=

n

∏
j=1

(
e−

θj
n + 1

)
.

(83)

6. Discussion
The preceding sections derived the closed-form expressions for the MM and WMM.

The derived expressions for the normalizing constant of the MM and WMM with different
discrepancy functions are summarized in Table 1.

Table 1. Summary of derived normalizing constants.

Discrepancy Function Normalizing Constant

Hamming distance Ψ(θ) =
(
e−θ + 1

)n

Symmetric difference Ψ(θ) =
(
e−θ + 1

)n

Similarity index Ψ(θ) =
(

e−
θ
n + 1

)n

Weighted Hamming distance Ψ(θ) = ∏n
j=1

(
e−θj + 1

)
Weighted Symmetric difference Ψ(θ) = ∏n

j=1

(
e−θj + 1

)
Weighted Similarity index Ψ(θ) = ∏n

j=1

(
e−

θj
n + 1

)

Consider a hypothetical combinatorial domain defined on the universal set
U = {a, b, c}. Given that the cardinality of the universal set is |U | = n, the set U spans 2n

possible combinations, i.e.,

P(U ) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Consider two sets κ = {a, b} and κ0 = {b}; the symmetric difference is

dS(κ, κ0) = |κ∆κ0| = |κ0\κ|+ |κ\κ0| = 0 + 1 = 1.
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The probability of sampling a set κ given the central tendency κ0 is expressed as

P(κ|κ0, θ) =
1

Ψ(θ)
e−θd(κ,κ0);

with an arbitrary value of θ = 1.5,

P({a, b}|{b}, 1.5) =
1

(e−1.5 + 1)3 e−1.5·1

= 0.1219.

Alternatively, if the similarity coefficient is used, i.e.,

dM(κ, κ0) =
|κ ∩ κ0|+ |κc ∩ κc0|

n
=

1 + 1
3

=
2
3

.

Then the resultant probability is

P({a, b}|{b}, 1.5) =
1(

e−
1.5
3 + 1

)3 e−1.5· 2
3

= 0.0887.

If the value of the dispersion parameter is arbitrary changed to θ = 5 for the similarity
coefficient calculation, the result is

P({a, b}|{b}, 5) =
1(

e−
5
3 + 1

)3 e−5· 1
3

= 0.0212.

The effect of the dispersion parameter is further illustrated by the following two examples
with the symmetric difference: given κ = {a, b} and κ0 = {a, b}, the probability of sampling
the central tendency for a dispersion of θ = 0 is

P({a, b}|{a, b}, 0) =
1

(e−0 + 1)3 e−0·0

= 0.125 =
1
2n .

In contrast, for a dispersion of θ = 10, the probability is

P({a, b}|{a, b}, 10) =
1

(e−10 + 1)3 e−10·0

= 0.9998 ≈ 1.0.

When the dispersion parameter is zero, the model behaves like a uniform distribution, with
all subsets of P(U ) equally likely to be sampled with a probability of 1

2n . As the dispersion
parameter increases, there is a point at which it becomes certain that the central tendency is
the only combination which can be sampled.

The combinatorial MM holds promise for application to a wide range of problems
in the combinatorial domain. Many combinatorial decision problems are in the class of
NP problems [30]. Combinatorial decision problems in NP often result in COPs, which
do not have tractable exact solutions. For example, the graph coloring problem, Boolean
satisfiability problem, job-shop scheduling problem, and the traveling salesman problem
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are all examples of COPs which are in NP. As a result, approximation approaches such as
metaheuristics are employed to find potentially optimal solutions in a reasonable amount
of time.

The combinatorial MM is applicable to any problem for which there is an underlying
combinatorial decision problem and which can be represented as a finite set. It is a popular
approach in the literature to enhance the exploration and exploitation capabilities of meta-
heuristics through the inclusion of a probabilistic local search mechanism. For example,
the popular particle swarm optimisation (PSO) metaheuristic has a variant which uses
the Gaussian density function to sample new positions [31]. Similarly, the logistic chaotic
function has been employed to improve the performance of differential evolution (DE) [32],
and the Wigner semicircle distribution has been used to stochastically apply different local
search techniques to evolutionary strategies (ESs) [33].

7. Conclusions and Future Work
This paper expanded the Mallows model (MM) and weighted Mallows model (WMM)

for use in combinatorial domains. Previously, the computational bottleneck for probability
calculation and combination sampling has been the normalizing constant. The requirement
to sum over all possible subsets of elements in the universal set made it computationally
infeasible to use the MM to sample combinations in relation to a central tendency.

The closed-form expressions for the normalizing constant with the Hamming distance,
symmetric difference, and similarity coefficient (Rand index) makes the MM and WMM
computationally feasible for use on combinatorial problems and provides a platform
for solving problems defined using set-valued representations. Undoubtedly, the most
natural measurement of discrepancy in combinatorial domains remains the Jaccard distance.
Unfortunately, the closed-form expression for the Jaccard distance remains unobtainable
due to the lack of an additive decomposition form; however, researchers are invited to
attempt a more efficient expression for the normalizing constant with the Jaccard distance.

Additionally, future work should concentrate on efficient sampling methods for the
MM and determine whether existing approaches like Gibbs sampling are appropriate.
Further, the parameter learning of the combinatorial MM should be explored, for example,
a thorough investigation into the maximum likelihood estimation (MLE) of the parameters.
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