
Citation: van Zyl, J.-P.; Engelbrecht,

A.P. Set-Based Particle Swarm

Optimisation: A Review. Mathematics

2023, 11, 2980. https://doi.org/

10.3390/math11132980

Academic Editors: Takfarinas Saber

and Aman Singh

Received: 12 June 2023

Revised: 28 June 2023

Accepted: 28 June 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

Set-Based Particle Swarm Optimisation: A Review
Jean-Pierre van Zyl 1 and Andries Petrus Engelbrecht 1,2,3,*

1 Division of Computer Science, Stellenbosch University, Stellenbosch 7600, South Africa; 20706413@sun.ac.za
2 Department of Industrial Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
3 Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology,

Mubarak Al-Abdullah 7207, Kuwait
* Correspondence: engel@sun.ac.za

Abstract: The set-based particle swarm optimisation algorithm is a swarm-based meta-heuristic that
has gained popularity in recent years. In contrast to the original particle swarm optimisation algo-
rithm, the set-based particle swarm optimisation algorithm is used to solve discrete and combinatorial
optimisation problems. The main objective of this paper is to review the set-based particle swarm
optimisation algorithm and to provide an overview of the problems to which the algorithm has been
applied. This paper starts with an examination of previous attempts to create a set-based particle
swarm optimisation algorithm and discusses the shortcomings of the existing attempts. The set-based
particle swarm optimisation algorithm is established as the only suitable particle swarm variant
that is both based on true set theory and does not require problem-specific modifications. In-depth
explanations are given regarding the general position and velocity update equations, the mechanisms
used to control the exploration–exploitation trade-off, and the quantifiers of swarm diversity. After
the various existing applications of set-based particle swarm optimisation are presented, this paper
concludes with a discussion on potential future research.

Keywords: set-based particle swarm optimisation; particle swarm optimisation; discrete optimisation;
combinatorial optimisation

MSC: 03E05; 03E75; 90C27; 68R01; 68R05

1. Introduction

Optimisation algorithms are methods that search for solutions to optimisation prob-
lems such that a best solution is found with respect to a given quantity [1]. The purpose of
the optimisation process is to find suitable solutions which best solve the given problem
while adhering to any relevant constraints. Optimisation algorithms are well studied in
the literature, and a substantial number of approaches exist. For an extensive review of
approaches, refer to [2].

Optimisation theory is an ancient branch of mathematics which has a rich and in-
fluential history [3]. To further illustrate the fundamental nature of optimisation theory,
optimisation theory laid the foundations for the development of the fields of geometry and
differential calculus [4]. Problems studied by pioneer mathematicians, such as Heron’s prob-
lem and Dido’s problem, show that optimisation theory has been relevant for thousands of
years [3,5]. However, optimisation is not an archaic field in isolation, but also has relevance
to active research fields such as machine learning (ML) [6]. Optimisation is a crucial part of
ML, as in ML the error between predictions and ground truths is minimised [7]. Therefore,
the performance of an ML model greatly depends on the implemented optimisation process.

Optimisation problems have varied levels of complexity, with optimisation problem
complexity classified according to the “hardness” of the corresponding decision prob-
lem [8]. The concept of the hardness of optimisation and decision problems is covered
extensively in the literature [9–11]. Multiple optimisation algorithms popular in the existing

Mathematics 2023, 11, 2980. https://doi.org/10.3390/math11132980 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11132980
https://doi.org/10.3390/math11132980
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1721-1002
https://orcid.org/0000-0002-0242-3539
https://doi.org/10.3390/math11132980
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11132980?type=check_update&version=1


Mathematics 2023, 11, 2980 2 of 36

literature make use of gradient information from the search space in order to find optimal
solutions [12]. Deterministic optimisation can be viewed as part of a classical branch of
mathematics [13]. Deterministic optimisation algorithms are described as mathematically
rigorous and are also referred to as mathematical programming approaches. In contrast to
deterministic approaches, stochastic optimisation algorithms use elements of randomness
to aid the search process [13].

A second way to classify optimisation algorithms is by the use of gradient information.
Various optimisation algorithms that utilise gradient information of the search space have
been developed, i.e., stochastic gradient descent [14], conjugate gradient descent [15],
subgradient descent [16], and the Broyden–Fletcher–Goldfarb–Shanno algorithm [17–20].
However, gradient information is not always available; hence, gradient-free deterministic
optimisations have been proposed, such as the Nelder–Mead algorithm [21].

The high level of complexity of certain optimisation problems has led to the rise in
popularity of the meta-heuristic algorithms used to solve optimisation problems [22–24].
Meta-heuristics iteratively guide heuristic processes to search for optimal solutions without
the need for problem-specific implementations [25]. Meta-heuristics tend to be both stochas-
tic and gradient-free approaches. Distinctive meta-heuristics have fundamental differences
in order to solve different types of optimisation problems, e.g., different adaptations of
meta-heuristics are required to solve real-valued optimisation problems versus discrete
optimisation problems.

The study of set theory is well-established and is believed to have been pioneered by
Dedekind and Cantor in the 1800s [26–28]. From the start of the foundation of the rigorously
defined set theory used to compare the sizes of infinite sets, to the widely accepted con-
temporary Zermelo–Fraenkel axioms, it is evident that set theory remains a fundamentally
important branch of mathematics [29]. In contrast to real-valued optimisation problems,
where solutions are in nx-dimensional real-valued space, set-based (also referred to as
set-valued) optimisation problems are a form of optimisation problem where solutions are
represented as sets of unordered elements. Set-valued optimisation unifies and generalises
scalar optimisation with vector optimisation, which provides a more general framework for
optimisation theory [30]. The importance of set-valued optimisation is further cemented
due to the wide range of applications available [31,32].

This paper aims to provide a review of the current state of research on particle swarm
optimisation (PSO) algorithms which utilise set-based concepts. The main aim is to con-
solidate and review the literature on existing set-based PSO algorithms, and to provide
a comprehensive overview of the set-based particle swarm optimisation (SBPSO) algo-
rithm, which is deemed to be the most suited set-based PSO. This paper contributes a
corpus of knowledge on the background and workings of eight algorithms (i.e., discrete
particle swarm optimisation (DPSO), set particle swarm optimisation (SetPSO), set swarm
optimisation (SSO), set-based particle swarm optimisation (S-PSO), fuzzy particle swarm
optimisation (FPSO), fuzzy evolutionary particle swarm optimisation (FEPSO), integer
and categorical particle swarm optimisation (ICPSO), and rough set-based particle swarm
optimisation (RoughPSO)) and also outlines the shortcomings of the reviewed algorithms.
Additionally, this paper reviews the SBPSO algorithm, which proves to be the set-based
algorithm which is most firmly grounded in set theory and has a wide range of existing
applications. There are seven reviewed applications of SBPSO, i.e., the multi-dimensional
knapsack problem (MKP), feature selection problem (FSP), portfolio optimisation, polyno-
mial approximation, support vector machine (SVM) training, clustering, and rule induction.

Section 2 of this paper provides an introduction to discrete and combinatorial optimisa-
tion, after which Section 3 introduces the PSO algorithm. In Section 4, multiple attempts at
the creation of a set-based particle swarm optimisation algorithm are review and critiqued.
Section 5 presents the set-based particle swarm optimisation algorithm reviewed in this
paper, followed by a description of the multi-objective optimisation and of multi-guide
set-based particle swarm optimisation (MGSBPSO) in Section 6. A summary of the existing
applications of the selected set-based PSO is given in Section 7. The conclusion of this paper



Mathematics 2023, 11, 2980 3 of 36

is presented in Section 8 and proposals for future work to be conducted on the reviewed
algorithm are given in Section 9.

2. Discrete and Combinatorial Optimisation Problems

Optimisation problems are solved through the search for a “best” or “most suitable”
solution in the search space which minimises (or maximises) a given quantity. For example,
given a search space S , the feasible region in the search space is denoted as F ⊆ S , and x
is an nx-dimensional candidate solution. A candidate solution x∗ ∈ F is a global minimum
of f if

f (x∗) < f (x), ∀x ∈ F , (1)

where F ⊆ S . Additionally, an optimisation problem with objective function f is defined as

minimise f (x), x = (x1, . . . , xnx ),

subject to gm(x) ≤ 0, m = 1, . . . , ng,

hm(x) = 0, m = ng + 1, . . . , ng + nh,

xj ∈ [xj,min, xj,max],

(2)

where x ∈ F (the feasible search space), gm is one of the ng inequality constraints, hm is
one of the nh equality constraints, and [xj,min, xj,max] are the boundary constraints for xj.
Note that this paper assumes minimisation, without the loss of generality.

Discrete optimisation is a subsection of optimisation which deals with problems that
have a finite or countable number of candidate solutions in the search space. Discrete-
valued and combinatorial optimisation problems differ from continuous-valued optimi-
sation problems in that the variables of solutions do not fall within a range on R, but are
chosen from a finite number of possibilities. For example, an nx-dimensional optimisation
problem that is restricted to integer solutions (x ∈ Znx ) is classified as a discrete optimi-
sation problem. More formally, Strasser et al. [33] define discrete-valued optimisation
problems as in Definition 1.

Definition 1 (Discrete-valued Optimisation Problem). A class of problems where an objective
function is to be optimised that has decision variables whose values are limited to finite sets, numerical
or categorical, ordered or unordered.

In the existing literature, the terms discrete optimisation problems and combinatorial
optimisation problems are often used interchangeably. This paper restricts nomenclature
to the use of “discrete optimisation problems” in reference to any optimisation problem
in which there exists a non-continuous-valued input variable. More in-depth background
information on combinatorial optimisation can be found in [34].

3. Particle Swarm Optimisation

The PSO algorithm is a population-based meta-heuristic that was first proposed by
Kennedy and Eberhart in 1995 [35]. PSO optimises a given objective function through the
use of a population of candidate solutions, referred to as particles. Each particle represents
a candidate solution to the optimisation problem and is associated with a position and
velocity in the search space. The particles “move” through the search space in search of
an optimal solution to the given problem. The movement of a particle is dictated by the
velocity of the particle, which is updated at each iteration, after which the velocity modifies
the position of the particle.

The particles are organised into neighbourhoods, neighbourhoods which facilitate
communication between particles as the particles search for optima. The neighbourhood
topology of the swarm is an important factor in PSO performance and has been the subject
of study in the literature almost since the advent of PSOs [36]. Multiple swarm topologies,
or sociometries, exist (e.g., star, ring, pyramid, Von Neumann) and have been shown to
influence PSO performance [37].



Mathematics 2023, 11, 2980 4 of 36

The velocity update equation consists of three components: the momentum term,
the cognitive term, and the social term. The momentum term biases the movement of
the particle to continue in the direction of the previous movement to facilitate smoother
trajectories [38]. The cognitive term biases the movement of the particle towards areas of
the search space that the particle has previously found to hold promise of an optimum.
Finally, the social component biases the movement of the particle towards areas of the
search space found by any particle in the relevant neighbourhood that have shown promise
of an optimum. The social component is selected as the best position in each neighbourhood
of the swarm, hence each neighbourhood best is defined as the personal best position of
the most optimal particle in the neighbourhood.

The velocity update equation per dimension is

vij(t + 1) = ωvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷij(t)− xij(t)], (3)

where i is the particle index, j is the dimension index, t is the iteration index, ω is the
momentum coefficient, and c1 and c2 are the cognitive and social acceleration coefficients,
respectively. Further, xi is the current particle position, yi is the personal best position,
ŷi the neighbourhood best position, and each r1j and r2j are random variables sampled
independently from U(0, 1).

The position of a particle is updated per dimension as

xij(t + 1) = xij(t) + vij(t + 1), (4)

where xi(t) is the current position and vi(t + 1) is the updated velocity as calculated by
Equation (3).

The best position of a PSO swarm at the final iteration needs to be in the feasible space
of the given problem in order to be accepted as a viable solution (i.e., the final global best
position cannot violate any constraints). However, the manner in which constrains are
handled has an impact on the performance of PSO. The existing literature outlines the use
of penalty methods [39,40], conversion to unconstrained Lagrangians [41,42], and repair
methods [43–46]. A full review of constrain handling strategies for PSO is given in [47].

The pseudocode for PSO is given in Algorithm 1.

Algorithm 1 Particle Swarm Optimisation.

1: Let ns be the number of particles in the swarm
2: Let t = 0
3: for i = 1, . . . , ns do
4: Initialise xi(0) as a random vector in Rnx

5: Initialise vi(0) = 0 (the zero vector in nx dimensions)
6: Calculate f (xi(0))
7: Let f (yi(0)) = ∞
8: Let f (ŷi(0)) = ∞
9: end for

10: while Stopping condition(s) not true do
11: for i = 1, . . . ns do
12: if f (xi(t)) < f (yi(t)) then
13: yi(t) = xi(t)
14: end if
15: if f (yi(t)) < f (ŷi(t)) then
16: ŷi(t) = yi(t)
17: end if
18: end for
19: for i = 1, . . . , ns do
20: Update vi(t) according to Equation (3)
21: Update xi(t) according to Equation (4)
22: end for
23: t = t + 1
24: end while



Mathematics 2023, 11, 2980 5 of 36

4. Particle Swarm Optimisation Algorithms for Discrete Optimisation Problems

The original PSO [35] was developed to solve continuous-valued optimisation prob-
lems exclusively. Although the original PSO has been applied to a wide range of optimisa-
tion problems [48–50], PSO is not able to solve discrete optimisation problems directly.

Almost immediately after the introduction of the original PSO algorithm used to solve
problems in Rnx , Kennedy and Eberhart introduced a discrete version known as binary
particle swarm optimisation (BPSO) to solve problems in {0, 1}nx [51]. PSOs for discrete
problems were then further studied by Schoofs and Bart in 2002 [52] as well as by Clerc in
2004 [53]. However, it was only after a further nine years that researchers started exploring
the possibility of applying mathematical set concepts to create new PSO variants for discrete
optimisation problems.

Set-based representations of candidate solutions are well suited for use in optimisation
problems because sets are a natural representation for combinatorial solutions. Further,
set theory is the canonical language of mathematics, and all mathematical objects can be
constructed as sets [54]. In order to solve discrete-valued optimisation problems using sets,
new set-based representations for positions and velocities need to be developed, as well as
new operators that can be used with the new set-based positions and velocities.

The remainder of this section outlines some of the existing PSO variants grounded in
set theory, as well as the shortcomings of the presented PSO variants. This paper does not
review all discrete PSO variants, because only the set theory variants are relevant to the
set-based algorithm which is reviewed.

4.1. Discrete Particle Swarm Optimisation

One of the first publications to incorporate set theory into PSOs was from Correa
et al., in which the DPSO algorithm is used to perform feature selection on bioinformatics
data [55].

In the original paper by Correa et al., DPSO is applied to reduce the dimensionality of a
training dataset through the removal of superfluous input attributes. DPSO represents can-
didate solutions as combinations of selected elements, instead of points in nx-dimensional
Euclidean space. The size of a position in the swarm is determined by a random number, k,
which is sampled from a uniform distribution, U(1, nx). A velocity of a position consists of
a 2× nx matrix, where the first row contains the “proportional likelihoods” of each attribute
and the second row contains the indexes of the elements. The proportional likelihood tracks
how often elements form part of either a position of a particle, the personal best position of
a particle, or the neighbourhood best position of a particle. The velocity update equation
then selects the elements which have been frequently present in previous positions to be
the next position.

A problem with the proportional likelihood approach is that the summation of likeli-
hoods may discourage exploration and lead to premature convergence. The selection of
elements with the highest likelihoods tends to reinforce the idea that previously selected
elements should remain as part of particle positions.

The DPSO algorithm is claimed to be a generic set-based algorithm, but has two main
limitations, namely:

1. Particle position sizes are fixed (though not to the same size), which means that
positions are not truly set-based;

2. The proportional likelihoods do not encourage exploration of all possible combina-
tions of elements.

4.2. Set Particle Swarm Optimisation

Independent of Correa et al., Neethling and Engelbrecht proposed the SetPSO algo-
rithm [56], which is used to predict ribonucleic acid (RNA) secondary structures. The
prediction of RNA secondary structures is achieved by representing all possible enumera-
tions of stacks of Watson–Crick nucleotide pairs and then minimising the free energy of the
structure to make the structure more stable. The SetPSO version of the PSO algorithm is



Mathematics 2023, 11, 2980 6 of 36

more generic than the DPSO, because particle positions are actual sets, with cardinalities
that can be both increased or decreased.

Although the SetPSO represents both positions and velocities of particles as sets, the
analogy of velocity in the particle update equation is not as effective as it could be. The
velocity set is modified by adding a close set and removing an open set. The close set is
a random combination of elements from the personal best position, neighbourhood best
position, and the rest of the universal set, while the open set is a random subset of the
current particle position. The velocity set is used to modify the position set, but because
the velocity set is not constructed with information of the search space, the velocity set is
not guaranteed to aid in finding the optimum. The construction of the close set and open
set can theoretically be improved, although no additional research has done so.

4.3. Set Swarm Optimisation

Veenhuis attempted to create a generic set-based PSO algorithm, the SSO algorithm [57].
The SSO approach was inspired by the need to solve problems such as data clustering,
where the required number of clusters is not known beforehand. Not knowing the number
of clusters beforehand makes using PSOs with particles of a fixed dimension (nx) unsuitable.
Veenhuis explicitly states that Neethling and Engelbrecht developed a set-based PSO that
is not a strong enough analogy of the original PSO, and that SSO aims to be more in the
spirit of the original PSO.

Veenhuis first described the abstract form that PSO update equations must have in
order to be considered analogies of the original PSO. The abstract form of the velocity
update equation is

vi(t) = ω� vi(t)⊕ φ1 � (yi 	 xi)⊕ φ2 � (ŷi 	 xi), (5)

where φ1 and φ2 are random variables (c1r1 and c2r2, respectively, in the original PSO),
yi is the personal best position, and ŷi is the neighbourhood best position. The abstract
operators (�, ⊕ and 	) need algorithm-specific definitions. As an example, the original
PSO follows the abstract form in Equation (5) and implements the following algorithm-
specific operators: � is the scalar multiplication operator,⊕ is element-wise vector addition,
and 	 is the element-wise vector subtraction. The abstract form of the position update
equation is

xi(t + 1) = xi(t)� vi(t + 1), (6)

where x is the position representation, v is the velocity analogy, and � is used to change
the position using the velocity.

Veenhuis defined set-compatible operators for each of the abstract operators in
Equations (5) and (6), and the result is a relatively generic set-based PSO. The veloc-
ity update equation of SSO implements an element-wise � operator that is defined for
each domain to which the algorithm is applied. Additionally, the velocity update equation
implements generic union and set difference operators. The position update equation uses
the union operator to add a velocity to a position.

There are two main issues that limit the general application of SSO, namely:

1. The domain-specific element-wise scalar multiplication operator, �, does not act on
the velocity set as a whole, and therefore does not influence the cardinality of the set;

2. The cognitive and social terms in the velocity update equation strictly add terms (⊕)
to particle positions, hence no terms are removed.

The fact that none of the operators in the velocity update equation are able to reduce
the cardinality of a position set leads to the “set bloating” of positions. Set bloating refers
to the phenomenon whereby the cardinality of a set increases monotonically, resulting in
oversized (or “bloated”) sets. The issue of set bloating lead to the creation of the reduction
operator, R, which requires a problem-specific distance-based mechanism to function. The
requirement that both the scalar multiplication and reduction operators need problem-
specific implementations severely limits the generic applicability of the SSO algorithm.



Mathematics 2023, 11, 2980 7 of 36

4.4. Set-Based Particle Swarm Optimisation

Chen et al. presented a novel approach to combinatorial optimisation problems by
using a new S-PSO algorithm [58]. The use of a set-based representation was justified,
because sets can be used to characterise the discrete search space of combinatorial optimisa-
tion problems very well. The new algorithm was evaluated on two popular combinatorial
problems, namely the travelling salesman problem and the MKP.

The positions of S-PSO are referred to as sets, but have a fixed dimensionality. Each
“dimension” of a position set is a subset of the universal set. To update a position at a new
iteration, S-PSO reinitialises the position to the empty set and uses a heuristic to reconstruct
the position. The velocities of particles are defined as “sets with possibilities”, which means
that velocities are sets where each element is a two-element tuple. The first element of a
tuple in a velocity set contains the component of the candidate solution, while the second
element of the tuple contains the probability of including the tuple in a future position.
Chen et al. distinguished between the sets with possibilities for velocities and the true sets
for positions through the use of the nomenclature “crisp” sets for positions.

It is important to note the drawbacks of the S-PSO implementation, namely:

1. S-PSO uses both crisp sets as well as “sets with possibilities”;
2. Particle positions are reconstructed for each iteration.

The inclusion of the sets with possibilities changes the nature of the positions and
velocities to be set-like instead of true sets, while the position reconstruction complicates the
particle update procedure. It is the opinion of the authors that S-PSO is overly complicated
for use as a generic set-based PSO.

4.5. Fuzzy Particle Swarm Optimisation

The FPSO algorithm is a PSO variant by Khan and Engelbrecht originally used to solve
the multi-objective optimisation of topologies for distributed local area networks [59]. The
FPSO algorithm is named after one of the key components of the algorithm, i.e., the unified
And-Or (UAO) fuzzy operator [60], which aggregates objectives. In FPSO, the particle
positions are sets of network links, while the velocities are sets of link exchanges that are
performed on the links in the position sets.

The FPSO algorithm cannot entirely be considered a set-based PSO. The positions of
FPSO are fixed dimension “sets” which contain elements of the candidate solution. The
velocity sets of FPSO contain instructions to substitute position set elements with different
compatible elements. Although the positions and velocities are represented by sets, there
are no true set-based operations performed on those sets. Furthermore, the position sizes
of the FPSO are fixed, and thus do not take advantage of the inherent size variability of
set-based representations.

4.6. Fuzzy Evolutionary Particle Swarm Optimisation

From the success of the FPSO, Mohiuddin et al. developed the FEPSO algorithm to
solve the shortest path first weight setting problem [61]. The FEPSO algorithm incorporates
the simulated evolution (SimE) heuristic [62] from evolutionary computing into the FPSO
algorithm. SimE is a search strategy with three main steps, namely evaluation, selection,
and allocation. These three steps are incorporated into the velocity calculation of FPSO
to improve the “blind” removal of weights in the position set. The addition of the SimE
technique is used to prevent the unnecessary removal of elements in the positions of
particles that are possibly optimal.

Unfortunately, because FEPSO is so closely based on FPSO, FEPSO suffers from the
same main shortcoming, namely that the position sets are of a fixed size and do not remain
true to the analogy of the original PSO.

4.7. Integer and Categorical Particle Swarm Optimisation

The ICPSO algorithm may not claim to be a true set-based PSO, but does warrant
investigation because of the approach of ICPSO to discrete optimisation. Strasser et al. [33]



Mathematics 2023, 11, 2980 8 of 36

proposed ICPSO as an approach which combines aspects of estimation of distribution
algorithms (EDA) [63] and PSOs.

From the original work of Strasser et al. [33], a position, X p, is a set of probability
distributions (X p = {Dp,1,Dp,2, . . . ,Dp,n}). Each component of a position is composed

of probability distributions, Dp,i = (da
p,i, db

p,i, . . . , dk
p,i). Each dj

p,i denotes the probabil-
ity that variable Xi takes on the value j for particle p. A velocity is a vector of vectors
V = (φp,1, φp,2, . . . , φp,n), where φp,i = (ϕa

p,i, ϕb
p,i, . . . , ϕk

p,i). The vector component ϕ
j
p,i is

the velocity of particle p for variable i in state j. The continuous valued velocity components
are used to modify the position components, i.e., the probability distributions. Similar to
FPSO, the positions of ICPSO are represented by sets, but the sets are of fixed size; the
velocities also simply modify the elements within the sets instead of the sets themselves.

4.8. Rough Set-Based Particle Swarm Optimisation

The RoughPSO algorithm is a competitive approach to both discrete and continuous
optimisation problems from Fen et al. [64]. In the original paper, RoughPSO is evaluated
on both function approximation and data classification problems, and performs well in
comparison to the chosen benchmark algorithms.

The positions and velocities of the particles in RoughPSO are rough sets [65], which
means that the elements of the set have a degree of membership. Rough sets are similar to
fuzzy sets, but rough sets can represent both fuzzy and clear concepts in sets [64]. Rough
sets also utilise the concept of “roughness”, which is a measurement based on the upper
and lower approximations of the set. The membership degree is calculated based on the
roughness of an element in the set, which is a value used to incorporate the uncertainty
that rough sets can capture. The velocity of a RoughPSO particle is a vector similar to the
velocity of the original PSO, but uses the membership degree of a velocity element instead
of an inertia weight coefficient.

A characteristic of the RoughPSO algorithm, contrary to other PSO variants, is that
the dimensionality of the positions remains fixed, but the number of particles in the swarm
decreases. Although the RoughPSO is a generic, versatile, and well-performing algorithm,
the fact that RoughPSO uses fixed dimensional positions and non-set velocities makes it
unsuitable to be referred to as a true set-based PSO.

4.9. The Search for Rigorously Defined Set-Based Particle Swarm Optimisation

The PSO variants described in the preceding sections all present fundamental draw-
backs which make each algorithm unsuited as a truly generic set-based PSO. The one PSO
variant which is grounded in set theory and implements true sets is the SBPSO algorithm,
developed by Langeveld and Engelbrecht [66]. A comprehensive background of SBPSO
warrants a dedicated review, and hence is not presented in summary form as with the
previous algorithms. Section 5 is dedicated to the SBPSO algorithm.

5. Set-Based Particle Swarm Optimisation

Langeveld and Engelbrecht proposed the SBPSO with the intention that SBPSO is a
“generic, set-based PSO that can be applied to discrete optimisation problems” [67]. The
existing “set-based” PSO approaches are rejected by Langeveld and Engelbrecht because
the algorithms fall short in three main categories. The problems raised are that existing
algorithms are

1. not truly set-based based;
2. not truly functioning in that sufficiently good results are not yielded on discrete

optimisation problems;
3. not generically applicable to all discrete optimisation problems, but instead require

domain-specific implementations.

The remainder of this section provides a comprehensive overview of the SBPSO
algorithm as presented by Langeveld and Engelbrecht.



Mathematics 2023, 11, 2980 9 of 36

5.1. Set-Based Concepts

The SBPSO algorithm proposed by Langeveld and Engelbrecht [66] is an attempt to
develop a generic set-based PSO using true sets. The SBPSO version of PSO uses a strict
mathematical definition of sets for particle positions and velocities.

One of the advantages of SBPSO is that the position sets are variable in size. Variable-
sized position sets help to reduce the negative effects of the curse of dimensionality, in
which high dimensional problems tend to suffer in performance. Variable-sized position
sets are also able to create simpler solutions through the modification of the size of the set.

Importantly, the velocity set acts on the position set as a whole and not the elements
within the position set. The fact that velocity sets act on position sets makes SBPSO more
analogous to the original PSO and fulfils the requirement of an all-purpose, rigorously
defined algorithm. Further, by not altering the elements in the position sets, SBPSO does
not require domain-specific information to modify a position set.

5.1.1. Positions and Velocities

In the original PSO, particles “move” through an nx-dimensional real-valued space.
The movement of particles is dictated by the attraction to different areas in the landscape,
which determines the momentum and direction of the particles. However, the idea of direc-
tion and momentum is undefined in a set-based environment and the absence necessitates
the development of set-based analogies of, and alternatives to, momentum and direction.

For SBPSO, the symbol i indicates the particle index, t denotes the current iteration,
and f represents the objective function. The search space is defined by the universal set
(the universe of discourse), U. The universal set is of size nU and contains elements en; the
universal set is expressed as U = {en}n∈NU . Position sets are subsets of the universal set,
alternatively stated; position sets are elements of the power set of the universal set. The
position of particle i at iteration t is expressed as Xi(t) ⊆ U. The velocity of particle i at
iteration t is the set Vi(t). The personal best and neighbourhood best positions of particle i
are Yi(t) and Ŷi(t), respectively.

Continuous-valued PSOs modify position vectors by modifying the real values in
each dimension of the position with the real values in the corresponding dimension of the
velocity vector. The change of the real-valued components brings the position vector closer
to the positions defined by the attractors. However, “moving” a set-based position closer to
the attractor positions with real-valued velocity components is not definable. Instead, the
velocity set adds and removes position set elements to make the position more similar to
the attractors. The concept of “alikeness”/similarity is well-defined for sets and has been
studied in the context of set-based meta-heuristics [68].

In order to change a position set, the elements of a velocity set are applied to the
position set. Each element of a velocity set is an operation pair: a tuple consisting of an
element from the universal set and the instruction indicating whether the universal set
element should be added to, or removed from, a position set. Velocity set elements take the
form (±, e), where (+, e) adds the element e to a position set while (−, e) removes e from
a position set. Consider the following example as a demonstration of the application of
a velocity set to a position set. If X = {a, c} is a position set and V = {(+, b), (−, c)} is a
velocity set, the resulting position after applying V to X is X′ = {a, b}.

5.1.2. Set-Based Operators

In order to define the necessary SBPSO operators, let P(U) denote the power set of the
universal set (meaning the set of all possible subsets) and let A× B denote the Cartesian
product of two sets, A and B. The following definitions are set-based operators used in the
SBPSO algorithm.

Definition 2 (The addition of two velocities). The addition of two velocities, V1 ⊕ V2, is
a mapping, ⊕ : P({+,−} × U)2 ⇒ P({+,−} × U), that takes two velocities and yields



Mathematics 2023, 11, 2980 10 of 36

one velocity. Implemented as set operations, a velocity added to a velocity is interpreted as the
union operator:

V1 ⊕V2 = V1 ∪V2. (7)

Definition 3 (The difference between two positions). The difference between two positions,
X1 	 X2, is a mapping, 	 : P(U)2 ⇒ P({+,−} ×U), that takes two positions and yields a
velocity. The result is effectively the set operation steps which are required to convert X2 into X1:

X1 	 X2 = ({+} × (X1\X2)) ∪ ({−} × (X2\X1)). (8)

Definition 4 (The scalar multiplication of a velocity). The scalar multiplication of a velocity,
η⊗V, is a mapping, ⊗ : [0, 1]×P({+,−}×U)⇒ P({+,−}×U), which takes a scalar and a
velocity, and yields a velocity. The mapping results in a randomly selected subset of size bη × |V|c
from V and is expressed as

η ⊗V = random subset(V, η). (9)

Note that 0⊗V = ∅ and 1⊗V = V.

Definition 5 (The addition of a velocity and a position). The addition of a velocity and a
position, X � V, is a mapping, � : P(U)×P({+,−}×U)⇒ P(U), that takes a position and
velocity and yields the resultant position. The operation is expressed as

X � V = V(X), (10)

which involves the application of the operation associated with each vi from V = {v1, . . . , vn} to X
by adding or removing each ei, as dictated by the elements in the velocity.

Definition 6 (The removal of elements). The removal of elements, β �− S, from a position
X(t), where S is shorthand for X(t) ∩ Y(t) ∩ Ŷ(t), is the mapping, �− : [0, |S|] × P(U) ⇒
P({+,−} ×U), that takes a scalar and a set of elements and yields a velocity. The operator is
implemented by randomly selecting a subset of elements from S, with a size determined by β, to be
removed from X(t):

β�− S = {−} ×
(Nβ,S

|S| ⊗ S
)

. (11)

The number of elements selected, Nβ,S, is defined as

Nβ,S = min
{
|S|, bβc+ 1{r<β−bβc}

}
, (12)

for a random number r ∼ U(0, 1); 1{bool} is 1 if bool is true and 0 if bool is false.

Definition 7 (The addition of elements). The addition of elements, β �+
k A, to a position

X(t) where A is shorthand for U\(X(t) ∪ Y(t) ∪ Ŷ(t)), is a mapping �+
k : [0, |A|]×P(U)⇒

P({+,−} ×U) that takes a scalar and a set of elements and yields a velocity. The operator is
implemented by randomly selecting a subset of elements from A, with a size determined by β, to be
added to X(t):

β�+
k A = {+} × k-Tournament Selection(A, Nβ,A), (13)

where Nβ,A is the number of elements to be added to X(t) as defined in Equation (12) and k is a
user-defined parameter. To perform tournament selection, the process in Algorithm 2 is followed.



Mathematics 2023, 11, 2980 11 of 36

Algorithm 2 k-Tournament Selection(A, Nβ,A).

1: Initialise lists e and s of length k
2: V+ = ∅
3: for n = 1, . . . , Nβ,A do
4: for j = 1, . . . , k do
5: Randomly select ej ∈ A
6: sj = f (Xi(t) ∪ ej)
7: end for
8: m = argminj(s)
9: V+ = V+ ⊕ ({+} × em)

10: end for
11: Return V+

5.2. Set-Based Update Equations

After the velocity set has been calculated with the operators and equations defined
above, the position update equation is defined using the velocity set as

Xi(t + 1) = Xi(t)� Vi(t + 1), (14)

where � has the function defined in Definition 5.
The velocity update equation is defined as

Vi(t + 1) = c1r1i(t)⊗ (Yi(t)	 Xi(t))⊕
c2r2i(t)⊗

(
Ŷi(t)	 Xi(t)

)
⊕(

c3r3i(t)�+
k Ai(t)

)
⊕(

c4r4i(t)�− Si(t)
)
,

(15)

where Si(t) and Ai(t) are calculated independently for each particle as outlined in
Definitions 6 and 7, respectively. The functions of ⊕, 	, and ⊗ are given in Definitions 2–4.
Each ck remains constant for all particles with c1, c2 ∈ [0, 1] and c3, c4 ∈ [0, |U|], and each
r1i, r2i, r3i, r4i is independently drawn from the distribution U(0, 1).

5.3. Exploration and Exploitation Mechanisms

Swarm intelligence algorithms such as the PSO, as well as meta-heuristics in general,
solve optimisation problems through the control of the level of exploration versus the level
of exploitation performed by the agents. Exploration is the process whereby agents of the
population search areas of the fitness landscape which have not previously been evaluated.
Exploitation is the process whereby areas of the search space which hold promise to contain
potential optima are searched in order to refine existing solutions.

One of the most important aspects needed to control the exploration–exploitation
trade-off of the original PSO is the inertia weight in combination with the acceleration
coefficients of the velocity update equation [38]. However, the concept of momentum does
not exist in a set-based environment; hence, alternative exploration–exploitation trade-off
mechanisms are required.

The SBPSO algorithm uses two attractors in the velocity update equation to encourage
exploitation: the cognitive component, i.e., c1r1i(t)⊗ (Yi(t)	 Xi(t)), and the social component,
i.e., c2r2i(t)⊗

(
Ŷi(t)	 Xi(t)

)
. The cognitive and social components encourage particles to

return to areas of the search space which have previously been shown to contain good solutions.
In lieu of a momentum component, SBPSO implements two additional velocity com-

ponents to encourage exploration: the addition operator, i.e., c3r3i(t)�+
k Ai(t), and the

removal operator, i.e., c4r4i(t)�− Si(t). The addition and removal operators are essential
for exploration. A version of SBPSO which utilise only the cognitive and social attractors is
not able to incorporate elements which are not in the initial population into new positions
(i.e., elements en /∈ ⋃Xi(0) will not be added to any new position set). The addition opera-



Mathematics 2023, 11, 2980 12 of 36

tor encourages exploration through the addition of elements to the position set which have
(potentially) not previously been evaluated; the added element are not restricted to those
contained in the original position sets. The removal operator balances the addition operator
because the removal of elements from position sets prevents set bloating; the removal
operator is also limited to X(t) ∩ Y(t) ∩ Ŷ(t), which aids in the avoidance of premature
convergence and further encourages exploration.

5.4. Set-Based Diversity Measures

For a swarm-based optimisation algorithm to find a global optimum, it is important to
control the trade-off between exploration and exploration [69]. In the literature, a popular
method of determining whether a swarm is in an exploration phase or exploitation phase is
to determine the diversity of the swarm [70]. In a real-valued environment, swarm diversity
is measured by calculating how widely distributed the particles in the swarm are. For
example, one popular method to determine the diversity of a swarm in a real-valued PSO
is to calculate the average distance around the swarm centre [70]. The average distance to
the centre of the swarm, D, is calculated as

D =
1
ns

ns

∑
i=1

√√√√ nx

∑
j=1

(xij − x̄j)2, (16)

where ns is the number of particles in the swarm, nx is the dimensionality of the problem, xij
is the j-th dimension of the i-th particle, and x̄j is the j-th dimension of the swarm centre x̄.

Contrary to a real-valued environment, the concept of distance does not exist in a
set-based environment. Because no distance can be calculated between particle positions, a
different measure is needed to determine swarm diversity. Similarity measures between
sets can be used to quantify swarm diversity in set-based meta-heuristics, as shown by
Erwin and Engelbrecht [68]. Erwin and Engelbrecht investigated the use of the Jaccard-
based distance and Hamming-based metrics as diversity measures in [68], and proposed
an improved Hamming-based measure for swarm diversity [71]. Erwin and Engelbrecht
stated that the behaviour of the average Jaccard distance of the swarm better represents
the intuitive idea of swarm diversity [68]. The average Jaccard distance of the swarm is
calculated as

d̄J =
∑ns−1

i ∑ns
j=i+1 dJ(Si, Sj)

∑ns−1
i ∑ns

j=i+1 1
, (17)

where dJ(·) is the Jaccard distance, calculated as

dJ(A, B) = 1− |A ∩ B|
|A ∪ B| , (18)

where A and B are sets.
Alternatively, the average Hamming distance measure can be used to calculate swarm

diversity. The average Hamming distance, or more simply the Hamming diversity, is

H̄ =
∑ns−1

i ∑ns
j=i+1 H(b(Si), b(Sj))

∑ns−1
i ∑ns

j=i+1 1
, (19)

where b(S) : S ⊆ U → B|U| is a bit vector mapping function that converts a set, S, into a
bit vector in which an entry of 1 indicates the presence of the element in question and a 0
indicates the absence of the element. Further, H is the Hamming distance between two bit
vectors, u, v ∈ Bnx , calculated as

H(u, v) = 1− ∑nx
k=1 δukvk

nx
, (20)



Mathematics 2023, 11, 2980 13 of 36

where δukvk is the Kronecker delta.
Erwin and Engelbrecht proposed an alternative formulation of the Hamming dis-

tance as an improvement over the original Hamming distance similarity measure [71].
The improved formulation modifies the bit vector mapping function to be
b∗(S) : S ⊆ (A ∪ B)→ B|A∪B|. The improved Hamming measure utilises Equation (19)
to calculate the swarm diversity, but the modified function, b∗(·), causes the new measure
to behave more similarly to the Jaccard similarity measure.

5.5. Control Parameter Sensitivity

Langeveld and Engelbrecht performed sensitivity analysis on the control parameters
of SBPSO for the MKP [72]. The sensitivity analysis process followed by Langeveld and
Engelbrecht averages 128 parameter combinations over 30 independent runs for each
topology-dataset pair (12 in total). The average results are then allocated to a quartile
based on the quality of the solution obtained. Based on the allocated quartiles, the control
parameters are placed into predefined bins which span the permissible ranges. The MKP is
the only problem for which control parameter sensitivity analysis exists for SBPSO.

Table 1 summaries the averaged best ranges for the control parameters of SBPSO for
the MKP. The bins given in Table 1 represent the ranges that result in the largest number of
solutions in the highest quartile, as obtained in [72].

Table 1. Summary of average best control parameter ranges.

Topology c1 c2 c3 c4 k

Star [0.8, 0.9) [0.5, 0.6) [2.0, 2.5) [3.5, 4.0) 9
Ring [0.8, 0.9) [0.5, 0.6) [1.5, 2.0) [2.0, 2.5) 6

Von Neumann [0.8, 0.9) [0.5, 0.6) [2.0, 2.5) [2.0, 2.5) 9

5.6. Algorithm

The pseudocode for SBPSO is given in Algorithm 3.

Algorithm 3 Set-Based Particle Swarm Optimisation.

1: Let ns be the number of particles in the swarm
2: Let t = 0
3: for i = 1, . . . , ns do
4: Let Xi(0) be a random subset of U
5: Let Vi(0) = ∅
6: Calculate f (Xi(0))
7: Let f (Yi(0)) = ∞
8: Let f (Ŷi(0)) = ∞
9: end for

10: while Stopping condition(s) not true do
11: for i = 1, . . . ns do
12: if f (Xi(t)) < f (Yi(t)) then
13: Yi(t) = Xi(t)
14: end if
15: if f (Yi(t)) < f (Ŷi(t)) then
16: Ŷi(t) = Yi(t)
17: end if
18: end for
19: for i = 1, . . . , ns do
20: Update Vi(t) according to Equation (15)
21: Update Xi(t) according to Equation (14)
22: end for
23: t = t + 1
24: end while



Mathematics 2023, 11, 2980 14 of 36

6. Multi-Guide Set-Based Particle Swarm Optimisation

A further advantage of SBPSO is that an extension has been developed to solve
multi-objective optimisation problems (MOOPs). The multi-objective extension of SBPSO,
i.e., MGSBPSO, was developed by Erwin and Engelbrecht [73] to solve the problem of
portfolio optimisation. MGSBPSO is inspired by multi-guide particle swarm optimisation
(MGPSO), a multi-objective variant of PSO developed by Scheepers et al. [74].

This section aims to provide an overview of MGSBPSO, specifically how the concepts
of MGPSO are added to SBPSO. Section 6.1 defines MOOPs, after which Section 6.2 provides
a description of MGPSO as well as MGSBPSO.

6.1. Multi-Objective Optimisation

MOOPs are defined as problems with two or three objectives that need to be optimised
simultaneously; problems with more than three objectives are referred to as many-objective
optimisation problems. MOOPs tend to be more complex than single-objective optimisation
problems because of the (possibly) conflicting “goals” that need to be optimised at the same
time. The conflicts mean that optimisation of one objective often causes degradation in
the quality of the solution in another objective. This subsection presents a brief overview
of the foundational concepts regarding MOOPs; more in-depth information can be found
in [75,76].

A MOOP is defined as

minimise f (x) = ( f1(x), . . . , fno (x)),

x = (x1, . . . , xnx ),

subject to gm(x) ≤ 0, m = 1, . . . , ng,

hm(x) = 0, m = ng + 1, . . . , ng + nh,

xj ∈ [xj,min, xj,max],

(21)

where no is the number of objectives; x ∈ F (the feasible search space), gm, and hm are
the inequality and equality constraints, respectively; and [xj,min, xj,max] are the boundary
constraints for xj.

Additionally, the following definitions regarding Pareto dominance and Pareto opti-
mality are required for MOOP solutions.

Definition 8 (Pareto Domination). A decision vector, x1, dominates, ≺, a decision vector, x2, if

1. fm(x1) ≤ fm(x2) ∀i = 1, . . . , no, (x1 is at least as good as x2 in all objectives);
2. ∃i = 1, . . . , no : fm(x1) < fm(x2), (x1 is strictly better than x2 in at least one objective).

Definition 9 (Weak Pareto Domination). A decision vector, x1, weakly dominates, �, the
decision vector, x2, if

1. fm(x1) ≤ fm(x2) ∀i = 1, . . . , no, (x1 is at least as good as x2 in all objectives).

Weak domination is similar to domination, but without the requirement that the dominating
solution should be strictly better in at least one objective.

Definition 10 (Pareto Optimal). A decision vector, x∗ ∈ F , is said to be Pareto optimal if there
is no other vector which dominates it, i.e.,

∀ x 6= x∗, @ x : fm(x) < fm(x∗) (22)

Further, the objective vector f ∗(x) is Pareto optimal if x is Pareto optimal.

Definition 11 (Pareto Optimal Set). The Pareto optimal set (POS), P∗, is the set that contains
all Pareto optimal decision vectors, i.e.,

P∗ = {x∗ ∈ F | @ x ∈ F : x ≺ x∗} (23)



Mathematics 2023, 11, 2980 15 of 36

Definition 12 (Pareto Optimal Front). The Pareto optimal front (POF), PF ∗, is the set contain-
ing all objective vectors, f , that correspond to a decision vector in the POS. Expressed mathematically,
the POF is

PF ∗ = { f = ( f1(x∗), . . . , fno (x∗)) | x∗ ∈ P} (24)

6.2. Multi-Guide Set-Based Particle Swarm Optimisation

Scheepers et al. proposed the MGPSO variant [74] in 2019 to solve MOOPs, as an
improvement over existing PSO approaches for MOOPs [77–80]. MGPSO uses a sub-
swarm per objective, and individual sub-swarm searches optimise with respect to a single
objective. Updates to the personal best and neighbourhood best positions of each particle
is done without consideration of other objectives. In order to facilitate information sharing
regarding other objectives, MGPSO implements an archive, A, of non-dominated solutions.
Information from the archive is used to bias the search process of particles towards the POF.

The velocity update equation for MGPSO is similar to that of the original PSO, except
for the addition of the archive component. The velocity update of PSO is as follows:

vk,ij(t + 1) = vk,ij(t)+

c1r1ij(t)
[
yk,ij(t)− xk,ij(t)

]
+

λk,ic2r2ij(t)
[
ŷk,ij(t)− xk,ij(t)

]
+

(1− λk,i)c3r3ij(t)
[

âk,ij(t)− xk,ij(t)
]
,

(25)

where vk,ij(t) is the current velocity in dimension j for particle i in sub-swarm k at iteration
t. The variables xij(t), yij(t), and ŷij(t) are the current position, personal best position,
and neighbourhood best position of dimension j in particle i from sub-swarm k. Random
variables r1ij, r2ij, and r3ij ∼ U(0, 1), while the variable âk,ij(t) is the jth component of
the archived solution selected for particle i in sub-swarm k. The acceleration coefficients
c1, c2, and c3 control the influence of the personal best, neighbourhood best, and archive
components, respectively. Finally, the coefficient λk,i ∼ U(0, 1) is a constant sampled
independently for each particle which controls the trade-off of the influence between the
social and archive components in the update equation. The archive is updated based on
the crowding distance [81] between the new solution and existing solutions in the archive,
as shown in Algorithm 4.

Algorithm 4 Crowding Distance-Based Bounded Archive Update.

1: Let x be the particle position
2: if ai ⊀ x ∀ai ∈ A then
3: if |A| = ns then
4: Remove the most crowded non-dominated solution from A
5: end if
6: for ai ∈ A do
7: if x ≺ ai then
8: Remove ai from A
9: end if

10: end for
11: Add x to A
12: end if

The MGSBPSO algorithm combines the SBPSO algorithm with the MGPSO algorithm
to solve MOOPs. MGSBPSO uses multiple sub-swarms, where each sub-swarm indepen-
dently optimises one of the objectives. The personal best position and neighbourhood best
position updates for a sub-swarm, k, are updated from positions in only sub-swarm k. The
same set-based operators given in Definitions 2–7 are used by MGSBPSO to implement the
velocity and position update equations.



Mathematics 2023, 11, 2980 16 of 36

Further, MGSBPSO employs the Pareto dominance relation to estimate solutions on
the POF, similar to the approach used by MGPSO. In order to share information about the
POF between sub-swarms, an archive guide is used. Selection of an archive guide from the
archive is done using tournament selection, with the tournament winner selected based on
the lowest crowding distance. When new non-dominated solutions are found, the archive
management strategy shown in Algorithm 4 is used to update the archive.

The velocity update equation for particle i in sub-swarm k is

Vi(t + 1) =

λc(t)r1(t)⊗ (Yi(t)	 Xi(t))⊕
λiλc(t)r2(t)⊗

(
Ŷi(t)	 Xi(t)

)
⊕

(1− λi)λc(t)r3(t)
(

Âi(t)	 Xi(t)
)
⊕

(1− λc(t))r4(t)⊗ Ai(t),

(26)

where r1(t), r2(t), r3(t), and r4(t) ∼ U(0, 1); λc(t) ∈ [0, 1] is the exploration balance coeffi-
cient (set equal to t

tmax
); and Xi(t), Yi(t), Ŷi(t), and Ai(t) all remain in the current position,

personal best position, neighbourhood best position, and archive position, respectively.
Additionally, λi is the archive coefficient for particle i and controls the influence of Ai(t).

The pseudocode for MGSBPSO is given in Algorithm 5.

Algorithm 5 Multi-Guide Set-Based Particle Swarm Optimisation.

1: Let t = 0
2: for each objective k = 1, . . . , no do
3: Initialise sub-swarm sk with nk particles
4: Define the objective function fk for objective k
5: for each particle i = 1, . . . , nk do
6: Let Xk,i(0) be a small subset of U
7: Let Vk,i(0) = ∅
8: Calculate fk(Xk,i(0))
9: Let f (Yk,i(0)) = ∞

10: Let f (Ŷk,i(0)) = ∞
11: end for
12: end for
13: while Stopping condition(s) not true do
14: for each objective k = 1, . . . , no do
15: for each particle i = 1, . . . , nk do
16: if fk(Xk,i(t)) < fk(Yk,i(t)) then
17: Yk,i(t) = Xk,i(t)
18: end if
19: if fk(Xk,i(t)) < fk(Ŷk,i(t)) then
20: Ŷk,i(t) = Xk,i(t)
21: end if
22: Update A with Xk,i(t) according to Algorithm 4
23: end for
24: end for
25: for each objective k = 1, . . . , no do
26: for each particle i = 1, . . . , nk do
27: Select Âk,i(t) from A using tournament selection
28: Update Vk,i(t) according to Equation (26)
29: Update Xk,i(t) according to Equation (14)
30: end for
31: end for
32: t = t + 1
33: end while



Mathematics 2023, 11, 2980 17 of 36

7. Existing Applications

The SBPSO algorithm has been applied successfully to a number of optimisation
problems. The existing applications have proved the utility and potential of the SBPSO
algorithm. Further, the range of existing applications shows that the SBPSO is a generic
approach that can be applied to a wide range of optimisation problems.

Each of the subsections in this section provides an overview of an optimisation problem
that has been solved with SBPSO. The overview of each problem gives a brief background
on each problem, as well as SBPSO-implementation details of the approach used to solve the
problem. The implementation details are centred around the formulations of the objective
functions, as well as the possible universal set generation functions.

7.1. Multi-Dimensional Knapsack Problem

The MKP is a combinatorial optimisation problem. Informally, the problem can be
defined as placing items into a proverbial knapsack, for which the total value of items needs
to be maximised subject to predefined constraints. The MKP is often referred to as the
multi-dimensional zero-one knapsack or the rucksack problem, and is NP-complete [82].

The MKP is the first problem to which Langeveld and Engelbrecht applied SBPSO [72].
MKP is a relatively old problem, as one of the first mentions in the literature of an MKP-like
problem is from 1955 [83].

7.1.1. Background

This section provides the mathematical definition of the MKP. Given an MKP, the
combined value of the items placed into the knapsack is calculated as

max
ni

∑
i=1

vixi, (27)

subject to the zero-one constraints

xi ∈ {0, 1} ∀i ∈ {1, . . . , ni}, (28)

where xi indicates if item i is in the knapsack. MKP is also subject to weight constraints

ni

∑
i=1

wi,jxi ≤ Cj ∀j ∈ {1, . . . , nc}. (29)

The number of available items to add to the knapsack is ni. The total number of weight
constraints in the problem is nc. The weight of each constraint, j, on each item, i, is given
by wi,j. The total weight of the items placed in the knapsack for constraint j must also not
exceed the capacity of the constraint, Cj. MKP is also subject to value constraints

vi > 0 ∀i ∈ {1, . . . , ni}. (30)

The total weights of the MKP have the constraints

wi,j ≤ Cj <
ni

∑
i=1

wi,j ∀i ∈ {1, . . . , ni}, j ∈ {1, . . . , nc}, (31)

where Cj is defined as

Cj = rj

nc

∑
i=1

wi,j ∀j ∈ {1, . . . , nc}, (32)

and rj is the “tightness ratio”, which determines how restrictive the weight constraints are.



Mathematics 2023, 11, 2980 18 of 36

7.1.2. Multi-Dimensional Knapsack Problem Using Set-Based Particle Swarm Optimisation

Because the MKP requires an unknown number of items to be placed into a knapsack,
a set-based representation of the candidate solutions is well suited. The suitability of a set-
based representation is in contrast to other meta-heuristics, such as the PSO, which requires
a fixed-length representation of candidate solutions, i.e., prior knowledge regarding the
maximum dimension of the solution.

The universal set is generated to contain all possible items which can be added to
the knapsack. The elements of U are represented as tuples which contain the details
of an item. Each item has an index, i, a value, vi, and nc weights. Each weight, wi,j,
corresponds to the cost of item i on constraint j. An element in U therefore takes the form
(i, vi, (wi,1, . . . , wi,nc)). An example of a hypothetical universal set for an MKP with five
items and three constraints is

U =

{(1, 12.0, (2, 4, 1)), (2, 9.5, (3, 3, 4)), (3, 7.1, (6, 1, 5)),

(4, 2.2, (10, 9, 10)), (5, 5.8, (6, 4, 3))}.
(33)

The objective function of the SBPSO used on the MKP optimises MKP as a maximi-
sation problem. It is important to note that not all particle positions necessarily represent
feasible solutions, hence the objective function is piecewise defined. The objective function
value for positions which satisfy all nc constraints is equal to the sum of all the values of
the items in the position, while positions which violate at least one constraint are assigned
a value of negative infinity. The objective function, f , is

f (X(t)) =

{
∑ni

i=i vixi if ∀j ∈ {1, . . . , nc} : ∑ni
i=1 wi,jxi ≤ Cj,

−∞ if ∃j ∈ {1, . . . , nc} : ∑ni
i=1 wi,jxi > Cj.

(34)

The SBPSO performs well on the MKP, but Langeveld and Engelbrecht note that
state-of-the-art MKP algorithms perform better. However, the MKP was merely used as
a proof-of-concept for SBPSO. Considering that the work of Langeveld and Engelbrecht
was used to introduce SBPSO, the approach from the paper is quite successful given that
SBPSO does not require any domain-specific knowledge to solve the MKP.

7.2. Feature Selection Problem

Feature (input attribute) selection is an important step of the data preprocessing, or
data wrangling, process [84,85]. If there are a larger number of features in comparison to
the number of available instances, classifiers and regressors tend to overfit and are slower.

Datasets with unnecessary features have higher dimensionality than needed, which
has been shown to reduce the performance of meta-heuristics such as PSOs [86]. The FSP is
solved by selecting a subset of the original features of a dataset. The selected subset should
ideally be free from features which are redundant, irrelevant, or too noisy.

7.2.1. Background

The FSP is defined in this section as a precursor to the application of SBPSO to FSP.
Given a dataset with the set of input features I of size nx, define P(I) be the power set
of I, i.e., the set containing all possible subsets of I. For a generic subset of I, denoted as
X ∈ P(I), let the fitness of X be defined as f (X). The fitness function, f , is a predefined
minimisation or maximisation function which quantifies how well a subset of features
solves an optimisation problem. Given an assumed a minimisation fitness function, the
optimal solution set, X, is defined as

f (X) = min{ f (S) | S ∈ P(I)}. (35)



Mathematics 2023, 11, 2980 19 of 36

In order to determine how effectively the subset of features, S, captures the rela-
tionships of the underlying classification problem, the performance of a classifier (with
relevance to a classification problem) is used. The performance of the classifier is measured
using an evaluation metric, such as accuracy. To illustrate how the suitability of a selected
subset of features can be evaluated, consider that a decision tree classifier is used to deter-
mine the fitness of a subset of features. Given two different subsets of features, S1 and S2,
the decision tree classifier achieves a performance on the two subsets. Let the accuracies be
A(S1) = 83.1% and A(S2) = 68.4%. These scores show that S1 is a better subset of features.

7.2.2. Feature Selection Using Set-Based Particle Swarm Optimisation

The feature selection problem can be solved with SBPSO, as shown by Engelbrecht
et al. [87]. SBPSO is an apt approach to FSP because the feature subsets, S ∈ P(I), are easily
represented as set-based particles.

The universal set contains all possible combinations of input attributes, i.e., all possi-
bilities of S ∈ P(I). For a hypothetical dataset with four input attributes (a1, a2, a3 and a4),
the generated universal set is

U = {a1, a2, a3, a4}. (36)

Further, the power set of the generated universal set is

P(U) =

{(a1), (a2), (a3), (a4),

(a1, a2), (a1, a3), (a1, a4), (a2, a3), (a2, a4), (a3, a4),

(a1, a2, a3), (a1, a2, a4), (a1, a3, a4), (a2, a3, a4)}.

(37)

The fitness function is
f (D) = Λ(tp, fp, fn, tn), (38)

where Λ(tp, fp, fn, tn) is a performance evaluation metric which, for classification problems,
quantifies the confusion matrix into a single real value. The input parameters of Λ are the
measures from the confusion matrix: tp is the number of true positives, fp is the number of
false positives, fn is the number of false negatives, and tn is the number of true negatives.

The approach used to apply SBPSO to the FSP involves creating an SBPSO wrapper
method to evaluate the suitability of features. The method for SBPSO for FSP is very similar
to the method outlined in Algorithm 3. The main difference is that the fitness function is
the evaluation function of a classifier, fC′ , instead of the standard objective function, f .

Engelbrecht et al. compare the SBPSO for feature selection against three state-of-the-art
discrete PSO algorithms (binary PSO, catfish binary PSO, and probability binary PSO).
SBPSO in conjunction with a k-nearest neighbours classifier outperforms all three state-of-
the-art algorithms with statistical significance and is considered the most effective tool for
the FSP.

7.3. Portfolio Optimisation

Portfolio optimisation is the process by which a “basket” of financial products (e.g., as-
sets) are selected in which to be invested, as well as the ratios of capital to be allocated to
each product. The goal of portfolio optimisation is to maximise the return on the invested
capital, while also to minimise the risk of losing the invested money.

7.3.1. Background

Portfolio optimisation requires a mathematical description of the behaviour of the
assets in the compiled portfolio in order to define the problem. A popularly used portfolio
model, the mean-variance model [88], is defined as

min λσ̄− (1− λ)R, (39)



Mathematics 2023, 11, 2980 20 of 36

where λ ∈ [0, 1] is used to balance the risk, σ̄, and return, R, of the portfolio. The risk of a
portfolio is calculated as the weighted covariance between all na assets, the formula used is

σ̄ =
na

∑
i=1

na

∑
j=1

wiwjσij, (40)

where wi and wj are the weights assigned to assets i and j, respectively, and σij is the
covariance between assets i and j. Further, the return of a portfolio is calculated as

R =
na

∑
i=1

Riwi, (41)

where Ri is the return associated with asset i. All weights assigned to assets must be
non-negative and must sum to one, i.e.,

na

∑
i=1

wi = 1, (42)

and
wi ≥ 0. (43)

The definition of the portfolio optimisation model optimised by SBPSO can be varied.
These variations include the addition of constraints, the extension of portfolio optimisation
as a MOOP, and the use of alternative definitions for risk and return. Constraints are added
to the portfolio optimisation formulation such as, for example, the limitation of the total
number of assets, the addition of a floor and ceiling to the asset weights, the incorporation
of transaction costs, or the inclusion of capitalisation into the model. A multi-objective
formulation of portfolio optimisation is obtained through the incorporation of more than
one sub-objective in the objective function or by the use of constraints as stand-alone
objectives. A multi-objective formulation can, for example, consist of the maximisation of
return, the maximisation of the diversity of included assets, or the maximisation of liquidity.
Alternative models of portfolio optimisation can include objectives such as semi-variance,
value-at-risk, prospect theory, Sharpe ratio, or mean absolute deviation [89–94].

7.3.2. Portfolio Optimisation Using Set-Based Particle Swarm Optimisation

Erwin and Engelbrecht [95] used SBPSO as part of a portfolio optimisation approach to
maximise return and minimise risk. The resultant algorithm solved portfolio optimisation
by interleaving SBPSO, to select assets, and PSO, to optimise the weights of selected assets.
To select an optimal combination of financial products, the PSO algorithm is interleaved
with SBPSO into a bi-level optimisation process to find optimal ratios of assets [95]. The
two stages of the bi-level optimisation process are solved by SBPSO and PSO. SBPSO selects
the assets to be included in the portfolio, after which PSO assigns the optimal weighting to
each chosen asset.

The universal set contains all possible assets that can be included in a portfolio. If,
for example, a portfolio is to be constructed from the top 10 companies in a hypothetical
market (companies A to J), the universal set will be

U = {A, B, C, D, E, F, G, H, I, J}. (44)

Combinations of these assets are selected and then used as input to the PSO.
The fitness of the SBPSO particle is the global optimum found by the PSO swarm which

optimises the weights of the assets selected by the SBPSO particle. The fitness function is
defined as the mean-variance model as in Equation (39), i.e., f (X) = λσ̄− (1− λ)R. The
meanings from Equations (40)–(43) are retained.



Mathematics 2023, 11, 2980 21 of 36

7.3.3. Multi-Objective Portfolio Optimisation Using Set-Based Particle Swarm Optimisation

Erwin and Engelbrecht improved on the original SBPSO-based portfolio optimisation
approach by using the MGSBPSO to solve portfolio optimisation as a MOOP [73]. The
improved approach uses MGSBPSO to select assets for investment, after which MGPSO
is used to find the optimal weight allocations for each selected asset. Both the upper and
lower levels of the approach define portfolio optimisation as a MOOP with respect to the
maximisation of return and the minimisation of risk.

The new approach uses the same mean-variance model as in Equation (39), but instead
of balancing the objectives with λ, the objective function is redefined as

f (x) = (min σ̄, max R). (45)

Because there are two objectives, i.e., maximise return and minimise risk, the popula-
tions of both MGSBPSO and MGPSO implement two sub-swarms, one that optimises each
objective. For positions in the first sub-swarm of MGSBPSO (which minimises risk) two
separate MGPSO sub-swarms are created, one which minimises risk and another which
maximises return. Similarly, for the second sub-swarm of MGSBPSO (which maximises
return), two separate MGPSO sub-swarms are created, one which minimises risk and
another which maximises return. Visually, the structure of the multi-sub-swarm approach
is shown in Figure 1.

MGSBPSO s1 to select as-
sets that minimize risk

MGPSO s1 to
minimize risk

MGPSO s2 to
maximize return

MGSBPSO s2 to select as-
sets that maximize return

MGPSO s1 to
minimize risk

MGPSO s2 to
maximize return

Figure 1. Multi-guide set-based particle swarm optimisation for portfolio optimisation structure.

Erwin and Engelbrecht compared the performance of both SBPSO and MGSBPSO
for portfolio optimisation against the non-dominated sorting genetic algorithm II [81] and
strength Pareto evolutionary algorithm 2 [96]. In contrast to the comparison algorithms,
the SBPSO-based approaches are able to approximate the whole true POF instead of only
parts of the true POF. Further, MGSBPSO is able to obtain a diverse set of optimal solutions,
which is beneficial to investors who have different risk preferences.

7.4. Polynomial Approximation

Supervised ML problems can be broadly classed into two main categories: classifica-
tion problems and regression problems. Regression problems are a class of ML problems
which calculate a real-valued label for an input vector. Problems which require a real-valued
label are contrary to problems which require one of the nC classes as an output.

A popular approach to solving regression problems is to train a neural network (NN)
which maps the input instances to output values [97,98]. However, NNs are a form of black
box models and cannot be interpreted easily. An alternative approach to solve regression
problems is to find a polynomial which describes the functional mapping from the input
data to the output value.

7.4.1. Background

Polynomial approximation is the process by which the structure of a functional map-
ping from nx dimensional input data to a real-valued output is found, i.e., f : Rnx → R.
One of the biggest advantages of learning the structure of the polynomial which maps



Mathematics 2023, 11, 2980 22 of 36

input to output is that the model is transparent. A transparent model has an advantage
over an opaque approach in that the results are more interpretable and explainable.

A polynomial is learned from an input dataset, D. The dataset D is nx-dimensional,
D = {(xp, yp)|p = 1, . . . , nN} with nN instances, where p is a specific instance,
xp = (x1p, x2p, . . . , xnx p) is a vector of input variables, and yp is the corresponding true
output value. A polynomial is constructed from multiple monomials, the building blocks
of a polynomial. Monomials take the form

ai

nx

∏
j=1

x
nj
j , (46)

where nj is the power of variable xj. Univariate polynomials have only a single input
dimension, and are defined as

f (x) =
nl

∑
j=0

ajxj = a0 + a1x + a2x2 + · · ·+ anl x
nl , (47)

where nl is the order of the polynomial. Multivariate polynomials have nx > 1 and take
the form of

f (x) = a0 +
nt

∑
t=1

at

nq

∏
q=1

x
λq
q , (48)

where nt is the number of monomials and at is the coefficient of the tth monomial. Further,
nq ≤ nx is the number of input variables in the tth monomial and λq is the order of the
corresponding variable.

7.4.2. Polynomial Approximation Using Set-Based Particle Swarm Optimisation

Van Zyl and Engelbrecht applied SBPSO as part of a hybrid algorithm which approxi-
mates functional mappings [99]. According to [99], polynomial approximation is defined
as a MOOP with two objectives. The two objectives are to find (1) the smallest number of
terms and lowest polynomial order, and (2) optimal coefficient values for the terms in order
to minimise the approximation error. Although polynomial approximation is defined as a
MOOP, Van Zyl and Engelbrecht implement a weighted aggregation approach in order to
apply the single-objective SBPSO algorithm to polynomial approximation.

The universal set of the SBPSO used to approximate polynomials contains the mono-
mials which can be added to the polynomial. The monomials in the universal set contain
combinations of input variables. The combinations of input variables are repeated with
different exponents, up to a user-specified polynomial order. The tuples in the universal
set contain two components: (1) the input attribute(s) of the monomial and (2) the power of
the monomial. A hypothetical dataset, with three input attributes and a specified order of
two, will generate the universal set:

U =

{(x1, 1), (x2, 1), (x3, 1), (x1, 2), (x2, 2), (x3, 2),

(x1x2, 1), (x1x3, 1), (x2x3, 1), (x1x2, 2), (x1x3, 2), (x2x3, 2)

(x1x2x3, 1), (x1x2x3, 2)}.

(49)

Equation (48) allows for monomials with different powers for each input variable; however,
Van Zyl and Engelbrecht limit the monomials to have the same power for all input variables
in order to reduce the universal set size.

The objective function is used to quantify how well a candidate polynomial describes
the mapping from input data to output values, as well as how optimal the polynomial



Mathematics 2023, 11, 2980 23 of 36

structure is. Polynomial approximation is defined as a MOOP, and the objective function is
formulated with a weighted aggregation approach. The objective function is

min F( f (x), D) = E( f (x), D) + λP( f (x)), (50)

where the approximation qualifier is the mean squared error, defined as

E =
1

nN

nN

∑
p=1

(yp − ŷp)
2, (51)

and the penalty term is defined as the ridge regression function, i.e.,

P( f (x)) =
nt

∑
i=0

a2
i . (52)

The SBPSO solves the upper part of the bi-level optimisation process needed to
approximate polynomials. Bi-level optimisation processes are separated into an upper-level
and lower-level optimisation process [100]. The upper part, where the structure of the
polynomial is determined, is solved by SBPSO. The lower part, where the coefficients of
the monomials are estimated, is solved by adaptive coordinate descent (ACD) [101]. The
interleaved algorithm is presented in Algorithm 6.

Algorithm 6 Set-Based Particle Swarm Optimisation for Polynomial Approximation.

Generate the universal set
Create a swarm containing ns particles
Initialise particle positions as random subsets of U
Initialise personal best and neighbourhood best values
while Stopping condition(s) not true do

for each particle i = 1, . . . , ns do
Use ACD to find monomial coefficients
Let f (Xi) be ACD fitness value
if f (Xi) < f (Yi) then

Update personal best: Yi = Xi
end if
if f (Yi) < f (Ŷi) then

Update neighbourhood best: Ŷi = Yi
end if

end for
for each particle i = 1, . . . , ns do

Update particle i’s velocity and position.
end for

end while

SBPSO for polynomial approximation is a promising approach to induce accurate and
low complexity functions. Van Zyl and Engelbrecht conclude that SBPSO scales better than
BPSO for more complex polynomials and maintains the advantage of interpretability over
universal approximators such as NN.

7.5. Support Vector Machine Training

An SVM is a model which uses a hyperplane to separate instances into one of two
classes [102]. An SVM has the desirable property of being both complex enough to solve
real-world problems, yet simple enough to be analysed mathematically [103]. The key
to training an SVM model successfully is to select the proper support vectors from the
training dataset.



Mathematics 2023, 11, 2980 24 of 36

7.5.1. Background

In order to train an SVM, instances from a training dataset are used as support vectors
to construct the optimal hyperplane. SVMs have been extended to separate non-linear
data through the use of techniques such as soft margins [104] and mapping to a higher-
dimensional feature space with a kernel “trick” [102,105,106]. Consider a dataset with nN
instances; let each instance consist of an input, xi ∈ RnN , and a class label, yi ∈ {−1, 1}.
Provided that the training data is linearly separable, all instances of each class lie on either
side of a separating hyperplane. The separating hyperplane has the form w · x + b = 0,
where w is the normal vector to the hyperplane. The decision function used to classify an
instance is

f (x) = sign(w · xi + b), (53)

where f classifies instance xi as either positive (yi = +1) or as negative (yi = −1). Under
the assumption of linear separability

∃ w ∈ Rnx ∧ ∃ b ∈ R | yi(w · xi + b)− 1 ≥ 0, i = 1, . . . , nN , (54)

where ∧ represents the logical and operator and equality holds for at least one xi. The input
instances for which the equality condition holds are referred to as support vectors and are
used to construct the separating hyperplane. The margin of an SVM, which is the combined
distance from the hyperplane to the support vectors on either side, is calculated by

1
||w|| . (55)

The maximisation of the margin of a SVM results in an optimal separating hyperplane for
that SVM. The maximisation of the margin is equivalent to the optimisation of

min
w,b

1
2
||w||2, (56)

subject to the constraints outlined in Equation (54).
The introduction of a vector of Lagrange multipliers (α ∈ RnN ) results in the primal

Lagrangian, defined as

L(w, b, α) =
1
2
||w||2 −

nN

∑
i=1

αi(yi(w · xi + b)− 1). (57)

The partial derivative of Equation (57) with respect to w is

∂L(w, b, α)

∂w
= w−

nN

∑
i=1

αiyixi, (58)

when the partial derivative is set to zero, the result is

w =
nN

∑
i=1

αiyixi. (59)

Further, the partial derivative of Equation (57) with respect to b is

∂L(w, b, α)

∂b
=

nN

∑
i=1

αiyi, (60)

when the partial derivative is set to zero, the result is

nN

∑
i=1

αiyi = 0. (61)



Mathematics 2023, 11, 2980 25 of 36

The partial derivative results in Equations (59) and (61) are substituted into Equation (57)
and results in the dual optimisation problem

max
α

W(α) =
nN

∑
i=1

αi −
1
2

nN

∑
i=1

nN

∑
j=1

(αiαjyiyj)xi · xj, (62)

subject to

αi ≥ 0, i = 1, . . . , nN ∧
nN

∑
i=1

αiyi = 0, (63)

where ∧ represents the logical and operator. Through Equations (53) and (59), w is shown
to be a linear combination of all training patterns as

f (x) = sign

(
nN

∑
i=1

αiyixi · xi + b

)
. (64)

Furthermore, it has been shown that only support vectors have non-zero Lagrangian
multipliers, i.e., αi, which further simplifies the linear combination of w.

In datasets with a noise where classes are not linearly separable, the soft margin
approach is used to allow for misclassification of some training patterns [104]. The soft
margin approach introduces slack variables, ξi ≥ 0, i = 1, . . . nN , which allow for the
misclassification of training patterns. The inequality from Equation (54) is modified to
yi(w · xi + b) ≥ 1− ξi and, as a result, the maximisation of the margin becomes equivalent
to the optimisation of

min
w,b,ξ

1
2
||w||2 + C

nN

∑
i=1

ξi, (65)

where C > 0 determines how severely constraint violations are penalised.
Furthermore, for datasets with underlying non-linear mappings, non-linear separa-

tions are achieved through the application of the kernel trick. Let Φ : Rnx → F be a
non-linear mapping from the input space to a higher dimensional feature space (F ) in
which the data is linearly separable. By Mercer’s theorem from [107], a suitable kernel is
defined, such that

K(xi, xj) = Φ(xi) ·Φ(xj) ∀xi, xj ∈ Rnx . (66)

The kernel function, K, can then be used to map input data to a higher dimensional space
and the decision function becomes

f (x) = sign

(
nN

∑
i=1

αiyiK(x, xi) + b

)
. (67)

7.5.2. Support Vector Machine Training Using Set-Based Particle Swarm Optimisation

Nel and Engelbrecht proposed the use of the SBPSO algorithm to train SVMs [108].
The SVM training problem needs to be formulated with set theory for the SBPSO to be used
to find the optimal hyperplane. The procedure is referred to as SBPSO-SVM.

Tomek links refer to two neighbouring instances which have different classes [109].
The presence of a Tomek link indicates that either the two points are close to the decision
boundary, or that one of the instances represents noise. Given that boundary instances of
a binary classification problem are Tomek links, Tomek links are more suited for use as
support vectors compared to random points from the dataset. The elements of the universal
set initially consists of all nN input training patterns, xi ∈ Rnx , from the training dataset,
i.e., U′ =

⋃nN
i=1 xi. However, the complexity of the search space is reduced through the

restriction of the universal set to consist of only Tomek links. Therefore, the universal
set is defined as U′ ⊇ U =

⋃nT
i=1 ti where ti is one of the nT Tomek links identified from

the training patterns. Let there be an optimal set of nm support vectors (selected from U)



Mathematics 2023, 11, 2980 26 of 36

contained in the set X′ ⊆ U. From X′, construct the support vector matrix, XS, which
contains the elements of X′ as

XS =


x11 x12 · · · x1nnx
x21 x22 · · · x2nx

...
...

. . .
...

xnm1 xnm2 · · · xnmnx

. (68)

The equation separating hyperplane can be rewritten in terms of the support vector ma-
trix as

wXS + b = 0. (69)

From Equation (69), w and b must be found, such that yi(w · xi + b)− 1 ≥ 0 ∀ xi ∈ U and
yi(w · xi + b)− 1 = 0 ∀ xi ∈ X′. Through the use of Lagrangian multipliers, as shown in
Equation (64), and application of the kernel trick, the decision function of the SVM can be
written as

f (x) = sign

(|X′ |
∑
i=1

αiyiK(x, xi) + b

)
. (70)

The objective function of SBPSO-SVM aims to optimise two goals: (1) to provide the
best separation between classes, and (2) to minimise the number of support vectors used
for classification. The two goals lead to the weight aggregated objective function

min
X′ ,α,b

φ
|X′|
|U| + (1− φ)g(X′, α, b), (71)

where |X
′ |
|U| minimises the number of support vectors, g(·) constitutes the degree of con-

straint violations, and φ ∈ [0, 1] regulates the contribution of each sub-objective. The
function, g(·), is defined as

g(X′, α, b) = λϕE(X′, α, b) + (1− λ)ϕI(X′, α, b), (72)

where ϕE is the mean squared error of the equality constraint violations, ϕI is the normalised
number of inequality constraint violations for non-support vectors, and λ ∈ [0, 1] regulates
the contribution of each component. The definition of ϕE is

ϕE(X′, α, b) =
1
|X′|

|X′ |

∑
i=1

(
1− yi

(|X′ |
∑
j=1

αjyjK(xi, xj) + b

))2

. (73)

The definition of ϕI is

ϕI(X′, α, b) =
1

|U\X′|

|U\X′ |

∑
i=1

δi, (74)

where

δi =

{
0 if yi

(
∑
|X′ |
j=1 αjyjK(xi, xj) + b

)
− 1 ≥ 0,

1 otherwise.
(75)

The optimal values of the Lagrangian multipliers, as well as the bias term, are found by the
ACD algorithm [101].

The pseudocode for the SBPSO-SVM procedure is given in Algorithm 7.



Mathematics 2023, 11, 2980 27 of 36

Algorithm 7 Set-Based Particle Swarm Optimisation for Support Vector Machine Training.

1: Let U′ =
⋃nN

i=1 be the universe of training instances with all features normalised to [0, 1]
2: Find the subset U ⊆ U′ of Tomek links in the training set
3: Pre-compute the kernel matrix K(i, j) for i, j = 1, . . . , nT
4: Initialise particle positions as random subsets of U
5: Initialise particle velocities as ∅
6: Initialise personal best positions for each particle i as Xi(0)
7: while stopping condition is not true do
8: Construct the support vector matrix for each particle from the position of the particle
9: Evaluate the fitness of each particle with Equation (71), where α, b in g(·) are

minimised with ACD
10: Update the personal best and neighbourhood best positions of each particle
11: Update the positions and velocities of each particle
12: t = t + 1
13: end while
14: Construct the final decision function, based on the optimal values of X′, α, and b

Nel and Engelbrecht conclude that SBPSO exhibits good performance on highly
separable data, but performs suboptimally on more complex problems. The definition
of the universal set as the Tomek links in the dataset, instead of the whole dataset, is an
integral part of the feasibility of SBPSO for SVM training. Without the use of Tomek links,
SBPSO suffers considerably in performance. SBPSO is more effective at minimising the
number of support vectors, which is a desirable property for the generalisation of SVMs.

7.6. Clustering

Broadly, ML tasks are often described as either supervised or unsupervised. Super-
vised ML problems require instances with both input attributes and a target variable,
while unsupervised problems do not utilise a target variable. A popular unsupervised
problem is the problem of clustering instances into distinct groups, or clusters. Clustering
has broad applications in data science and can be used for classification, prediction, or data
reduction [110,111].

7.6.1. Background

The main principle behind clustering is that instances from the dataset which have
similar characteristics belong to the same cluster. There are three main objectives to be
taken into account when clustering data instances [112]. The first is to produce compact
clusters, meaning that the spread of instances in the same cluster should be minimised.
Secondly, clusters should be well-separated, i.e., the distances between cluster centroids
should be maximised. Finally, the number of clusters used to perform clustering should
be optimal.

Examples of popular approaches to clustering are k-means clustering [113], k-medoids
clustering [114], Gaussian mixture models [115,116], and density-based spatial cluster-
ing [117].

7.6.2. Clustering Using Set-Based Particle Swarm Optimisation

Brown and Engelbrecht proposed the use of SBPSO to perform data clustering [118],
after which De Wet performed an in-depth analysis of the performance of the proposed
algorithm [119,120]. In order to perform clustering with SBPSO, candidate solutions are
represented as sets of centroids. The centroids in the sets are used to define the clusters to
which instances in the dataset can belong. The instances in the training dataset act as the
points which can be selected as centroids. Hence, the universal set contains the instances
in the training dataset. Because SBPSO for data clustering uses the input data points as



Mathematics 2023, 11, 2980 28 of 36

centroids, it is categorised as k-medoids clustering instead of k-means clustering. The
universal set, U, for an unlabelled dataset with nN instances, D, is populated as

U = {xp | xp ∈ D, p ∈ {1, . . . , nN}}. (76)

The particle positions of SBPSO are constructed as

Xi = {mi,1, . . . , mi,j, . . . , mi,nk}, (77)

where 2 ≤ nk = |Xi| ≤ |U| is the number of clusters in the position, and mi,j represents the
medoid of cluster j in the position of particle i.

To evaluate the suitability of the nk clusters created by particle i, a combination of two
clustering performance evaluation metrics is used. The objective function is defined as

f (Xi) = s(Xi) + d(Xi), (78)

where s(·) represents the silhouette index value and d(·) represents the Dunn index value.
The silhouette index [121] is the average of the silhouette values of the instances in the
dataset; the silhouette value quantifies the difference in similarity of an instance to other in-
stances in the same cluster against the similarity to instances in different clusters. The Dunn
index [122] quantifies both the inter-cluster distance and the intra-cluster spread. It should
be noted that the objective function used in [119] consists of only the silhouette index.

Brown and Engelbrecht conclude that none of the evaluated clustering algorithms
are able to dominate over all the implemented datasets. SBPSO is not able to achieve the
best performance on any of the datasets, but is successful in inducing the optimal number
of clusters.

7.7. Rule Induction

Rule induction is the process by which explainable mappings are created from a
set of input instances and the target variables associated with the given input instances.
Rule-based models can be seen as an extension of traditional classification models because
rule-based models are able to classify instances into one of nC distinct classes and are able
to outline the conditions which justify the classification. The human-interpretable nature of
the rule-based models are in contrast to black box approaches, such as NNs, which require
additional post-processing to be understood [123].

Rule induction is especially relevant due to the resurgence in popularity of explainable
artificial intelligence approaches, in which scientists aim to create models which can explain
and justify why prediction are made.

7.7.1. Background

Generally, the output of a rule induction algorithm is a list of human-readable IF-THEN
rules. The first component of a rule is known as the antecedent and follows the keyword IF.
The antecedent of a rule dictates which instances in the dataset are classified by that rule.
An instance is classified by a rule if it is covered by a rule; coverage by a rule is established
when all the conditions, represented by selectors, in the antecedent are satisfied by the
variables of the input instance. The second component of a rule is the consequent, which
determines the class assigned to an input instance. The consequent follows the THEN part
of the rule.

A popular approach to induce a list, or set, of rules in a rule-by-rule fashion is to
use the set-covering approach. The set-covering, also referred to as separate-and-conquer,
approach is a two-step process. First, set-covering induces a rule which best describes the
dataset according to a predefined metric, after which the set-covering process removes
all instances covered by the new rule and then repeats the process. A basic set-covering
approach is presented in Algorithm 8.



Mathematics 2023, 11, 2980 29 of 36

Algorithm 8 Basic Set-Covering Approach.

1: Define input dataset as E
2: Initialise rule set R = ∅
3: while E contains instances do
4: Induce new rule r
5: Remove all instances from E covered by r
6: Add r to R
7: end while
8: Return R

Popular approaches in existing literature tend to be greedy algorithms which make
use of gain-based approaches [124–127]. Gain-based approaches attempt to maximise the
information gained at each step of the set-covering process, with the detriment that rules
tend to overfit the training data.

7.7.2. Rule Induction Using Set-Based Particle Optimisation

Van Zyl and Engelbrecht proposed a new approach to rule induction by applying
SBPSO to induce rule lists [128], titled rule induction using set-based particle swarm
optimisation (RiSBPSO). The RiSBPSO approach follows a set-covering approach, with
SBPSO used to induce individual rules. The use of SBPSO is justified, because the objective
function of the algorithm can be used to avoid overfitting, more explorative freedom is
afforded on the selectors, and the functionality of RiSBPSO can be expanded more easily.

To understand how the universal set is generated, consider the following example:
provided with the hypothetical dataset D in Table 2, the universal set U is shown in
Equation (79).

U =

{(a1,=, v1,1), (a1, 6=, v1,1), (a1,=, v1,2), (a1, 6=, v1,2),

(a2,=, v2,1), (a2, 6=, v2,1), (a2,=, v2,2), (a2, 6=, v2,2),

(a2,=, v2,3), (a2, 6=, v2,3), (a3,=, v3,1), (a3, 6=, v3,1),

(a3,=, v3,2), (a3, 6=, v3,2)}.

(79)

Table 2. Summary of legitimate attribute values in a hypothetical dataset.

Attribute Possible Values

a1 {v1,1, v1,2}
a2 {v2,1, v2,2, v2,3}
a3 {v3,1, v3,2}

The prototype of RiSBPSO uses a very complex and convoluted objective function.
The prototype objective function is defined as

f (D, r) = w1(1−A(D, r)) + w2(1−P(D, r))
+w3(1−L(D, r)) + w4(S(D, r)) + w5(E(D, r)),

(80)

where A(D, r) =
(

p+(N−n)
P+N

)
is the accuracy of the rule, P(D, r) =

(
p

p+n

)
is the purity

of the rule, L(D, r) =
(

p+1
p+n+2

)
is the Laplace estimator, S(D, r) =

(
l
|U|

)
is the size of

the rule, and E(D, r) = e is the entropy of the covered instances. Each wi ∈ [0, 1] and
∑5

i=1 wi = 1. Although the prototype objective is very convoluted, it should be noted that
the effect of the composition of the objective function on performance is thoroughly studied
by Van Zyl in [129].

The pseudocode for the RiSBPSO algorithm is provided in Algorithm 9.



Mathematics 2023, 11, 2980 30 of 36

Algorithm 9 Rule Induction using Set-based Particle Swarm Optimisation.

Let E be the input dataset
Let R be the initial empty rule list
while E is not empty do

Select the majority class as the target class, Ci
Induce an SBPSO swarm with a target variable Ci according to Algorithm 3
Let the resulting global best position be r
Add r to R
Remove the instances covered by the r from the E

end while

7.7.3. Multi-Objective Rule Induction Using Set-Based Particle Optimisation

Van Zyl and Engelbrecht reformulated rule induction as a MOOP and applied the
MGSBPSO algorithm to induce rule lists, which resulted in rule induction using multi-
guide set-based particle swarm optimisation (RiMGSBPSO) [129]. The MOOP version of
rule induction aims to maximise the aptness (suitability, measured with a metric e.g.) of a
rule given a dataset, and also to minimise the complexity of the rule. The complexity of a
rule is quantified by the number of selectors in the antecedent of the rule. The number of
selectors in the antecedent is minimised in order to avoid overfitting and to improve the
generalisation capabilities of the rule.

The multi-objective formulation of rule induction is formulated as

f (r, D) = (max Λ(r, D), min C(r)) (81)

where r is the induced rule, D is the training dataset, Λ is the aptness of the rule on the
dataset (e.g., accuracy), and C is the complexity of the rule. The feasible region of the
search space, F ⊆ S , is all the selectors that can be used in the antecedent of a rule, i.e., the
permissible attribute-value pairs.

Van Zyl and Engelbrecht found that SBPSO is a suitable algorithm for the induction of
rule lists and is able to outperform the comparison algorithm based on average accuracy
over all datasets. It is noted that the comparison algorithms are advantaged due to the
implementation of pruning in the rule induction process of the comparison algorithms.
The RiMGSBPSO version of rule induction performs worse than expected because a simple
complexity penalisation approach outperforms the multi-objective formulation.

8. Conclusions

This paper provided a comprehensive overview of the set-based particle swarm
optimisation (SBPSO) algorithm. The concepts of both single-objective and multi-objective
problems were introduced as precursors to the outline of a generic set-based particle swarm
optimisation (PSO). The differences between real-valued optimisation and set-valued
optimisation problems was explained and the requirements for a well-defined set-based
PSO were given. Eight existing attempts at the creation of a set-based PSO algorithm were
described and critiqued, with reasons provided why the shortcomings of each approach
prevent the algorithm from being a true set-based and generically applicable PSO algorithm.

An in-depth description of SBPSO was provided, with details on the necessary set-
based operators, the velocity and position update equations, the exploration–exploitation
control mechanisms, and the concept of set-based swarm diversity all explained. Explana-
tions of seven existing applications of SBPSO were provided, specifically with details on
the implementations of the universe generation and objective function definition.

Further, a description of how the multi-guide particle swarm optimisation (MGPSO)
was used to inspire the development of the multi-guide set-based particle swarm opti-
misation (MGSBPSO), the variation of SBPSO used to solve multi-objective optimisation
problems (MOOPs). Two existing MOOPs to which MGSBPSO has been applied were
outlined, with explanations on the advantages and shortcomings of the approaches.



Mathematics 2023, 11, 2980 31 of 36

Overall, this paper presented a review of a generic set-based PSO algorithm, i.e., SBPSO,
and the existing applications of SBPSO. The SBPSO algorithm showed clear advantages in
terms of set-based definition and range of application over other algorithms which claim
to be set-based PSO algorithms. There is also potential for the improvement of SBPSO, as
outlined in the next section.

9. Future Work

This section outlines potential future investigations which can be performed on,
or expansions that can be made to, the SBPSO algorithm. The applications of SBPSO
can be expanded through the adaptation of the objective function for use on the more
combinatorial optimisation problems. However, the remainder of this section is dedicated
specifically to non-application expansions.

9.1. Universe Exploration Study

An important aspect of the success of a meta-heuristic is sufficient exploration of the
search space in which the meta-heuristic operates. It is beneficial to understand how well
a swarm is able to cover the areas of the search space in order to determine if a sufficient
percentage of candidate solutions are considered. While literature on the measure of the
level of exploration versus exploitation of the SBPSO swarm is available, no work has been
conducted to determine if the swarm considers all elements in the universal set for use
in candidate solutions. Future work should consider how well the swarm explores the
search space.

9.2. Swarm Convergence Study

In contrast to the convergence studies on the original PSO [130], no work has been
conducted to understand the convergence behaviour of the SBPSO swarm. Further insight
into the convergence behaviour of the swarm will lead to a better understanding of how
well the exploration–exploitation trade-off is managed by SBPSO.

9.3. Hyperparameter Sensitivity Analysis

The SBPSO algorithm has five hyperparameters, i.e., c1, c2, c3, c4, and k. However,
the majority of existing studies do not sufficiently tune the hyperparameters of SBPSO to
extract maximum performance. Only Langeveld and Engelbrecht [72] rigorously studied
the effect of the hyperparameters on the performance of SBPSO when applied to MKP. Not
only are the problem-specific hyperparameters not tuned, but the effect of the individual
hyperparameters on SBPSO in a more general context is not understood. Therefore, a
thorough study on the sensitivity of SBPSO to the hyperparameters needs to be conducted
to improve future tuning approaches for new applications. Hyperparameter sensitiv-
ity analysis can be performed with functional analysis of variance (fANOVA), as seen
in [131–133].

9.4. Hyperparameter Self-Adaptation

A further possible improvement after a hyperparameter sensitivity analysis is the
implementation of self-adaptive hyperparameters. Self-adaptive variations of PSO have
been developed [134]; however, there is no comprehensive study on the effect of self-
adaptation on SBPSO.

9.5. Improved Diversity Injection Mechanisms

The two exploration mechanisms of SBPSO, the �+ and �− operators, are rather
rudimentary and unsophisticated methods of encouraging exploration during the search
process. Research which proposes improvements to these two operators has the potential
to increase the performance of SBPSO by ensuring that the correct areas of the search space
are explored and then exploited.



Mathematics 2023, 11, 2980 32 of 36

9.6. High Dimensional Performance Evaluation

One of the big advantages of SBPSO is the fact that the dimensionality of particles is
variable. The ability to represent candidate solutions in a simpler format in comparison
to traditional fixed-dimensional algorithms holds potential for improved performance in
higher dimensions. However, the current literature lacks analysis of SBPSO performance
on high dimensional problems. Future research should include a thorough study on the
performance of SBPSO on high dimension problems.

9.7. Dynamic Problem Adaptation

Dynamic problems are a class of optimisation problem in which the objective function
varies over time. Dynamic problems are often more complex than static problems because
the location of the optima and the values of the objective function at the optima tend to
change. Population-based meta-heuristics are often not well-suited to solving dynamic
problems because a converged swarm is unable to discover new optima due to a lack of
diversity, which results in a decreased ability to explore. There are existing adaptations
of PSO [135], but no adaptations of SBPSO to solve dynamic problems. Therefore, future
work can include SBPSO variations to solve dynamic problems.

9.8. Constrained Problem Adaptation

Many real-world optimisation problems have additional constraints, other than the
standard boundary conditions, which need to be satisfied. Candidate solutions which
violate given constraints are deemed infeasible, regardless of the quality of the objective
function value. Multiple methods for constraint handling in PSO have been proposed [47],
and some of these methods can be adapted for use in SBPSO.

Author Contributions: Conceptualization, A.P.E.; methodology, J.-P.v.Z. and A.P.E.; investigation,
J.-P.v.Z.; writing—original draft preparation, J.-P.v.Z.; writing—review and editing, A.P.E.; supervi-
sion, A.P.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the National Research Foundation of South Africa.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd ed.; Wiley Publishing: New York, NY, USA, 2007.
2. Arora, R.K. Optimization: Algorithms and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015.
3. Grötschel, M. Optimization Stories; Deutschen Mathematiker-Vereinigung: Deutschland, Germany, 2012.
4. Tikhomirov, V.M. Stories about Maxima and Minima; Universities Press: Madison, CT, USA, 1990; Volume 1.
5. Lange, K. Optimization; Springer Science & Business Media: New York, NY, USA, 2013; Volume 95.
6. Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A survey of optimization methods from a machine learning perspective. IEEE Trans. Cybern.

2019, 50, 3668–3681. [CrossRef] [PubMed]
7. Bennett, K.P.; Parrado-Hernández, E. The interplay of optimization and machine learning research. J. Mach. Learn. Res. 2006,

7, 1265–1281.
8. Slaney, J.; Thiébaux, S. On the hardness of decision and optimisation problems. In Proceedings of the European Conference on

Artificial Intelligence, Brighton, UK, 23–28 August 1998; John Wiley: Hoboken, NJ, USA, 1998; pp. 244–248.
9. Lenstra, J.K.; Kan, A.H.G.R. Computational complexity of discrete optimization problems. In Annals of Discrete Mathematics;

Elsevier: Amsterdam, The Netherlands, 1979; Volume 4, pp. 121–140.
10. Ausiello, G.; Marchetti-Spaccamela, A.; Protasi, M. Toward a unified approach for the classification of NP-complete optimization

problems. Theor. Comput. Sci. 1980, 12, 83–96. [CrossRef]
11. Bruschi, D.; Joseph, D.; Young, P. A structural overview of NP optimization problems. In Proceedings of the Optimal Algorithms,

Varna, Bulgaria, 29 May–2 June 1989.
12. Saad, D. On-Line Learning in Neural Networks; Cambridge University Press: Cambridge, MA, USA, 1999.
13. Cavazzuti, M. Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics; Springer Science &

Business Media: New York, NY, USA, 2012.
14. Robbins, H.; Monro, S. A Stochastic Approximation Method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]

http://doi.org/10.1109/TCYB.2019.2950779
http://www.ncbi.nlm.nih.gov/pubmed/31751262
http://dx.doi.org/10.1016/0304-3975(80)90006-7
http://dx.doi.org/10.1214/aoms/1177729586


Mathematics 2023, 11, 2980 33 of 36

15. Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436.
[CrossRef]

16. Shor, N.Z. Minimization Methods for Non-Differentiable Functions; Springer Science & Business Media: New York, NY, USA, 1985;
Volume 3.

17. Broyden, C.G. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations. IMA J. Appl.
Math. 1970, 6, 76–90. [CrossRef]

18. Fletcher, R. A new approach to variable metric algorithms. Comput. J. 1970, 13, 317–322. [CrossRef]
19. Goldfarb, D. A family of variable-metric methods derived by variational means. Math. Comput. 1970, 24, 23–26. [CrossRef]
20. Shanno, D.F. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 1970, 24, 647–656. [CrossRef]
21. Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
22. Hertz, A.; Widmer, M. Guidelines for the use of meta-heuristics in combinatorial optimization. Eur. J. Oper. Res. 2003, 151, 247–252.

[CrossRef]
23. Voß, S. Meta-heuristics: The state of the art. In Proceedings of the Local Search for Planning and Scheduling: ECAI 2000

Workshop, Berlin, Germany, 21 August 2000; Revised Papers; Springer: Berlin/Heidelberg, Germany, 2001; pp. 1–23.
24. Osman, I.H.; Kelly, J.P. Meta-heuristics: An overview. In Meta-Heuristics: Theory and Applications; Springer: New York, NY, USA,

1996; pp. 1–21.
25. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surv. 2003,

35, 268–308. [CrossRef]
26. Lejeune Dirichlet, G.; Dedekind, R. Untersuchungen über ein Problem der Hydrodynamik (Aus dessen Nachlass hergestellt von

R. Dedekind). J. Math. 1861. [CrossRef]
27. Cantor, G. On a property of the class of all real algebraic numbers. Crelle’s J. Math. 1874, 77, 258–262.
28. Cantor, G. Contributions to the Founding of the Theory of Transfinite Numbers; Open Court Publishing Company: Chicago, IL,

USA, 1915.
29. Jech, T.J. Set Theory; Springer: Berlin/Heidelberg, Germany, 2003; Volume 14.
30. Khan, A.A.; Tammer, C.; Zălinescu, C. Set-Valued Optimization; Springer: Berlin/Heidelberg, Germany, 2016.
31. Aubin, J.; Ekeland, I. Applied Nonlinear Analysis; Courier Corporation: North Chelmsford, MA, USA, 2006.
32. Lalitha, C.S.; Dutta, J.; Govil, M.G. Optimality criteria in set-valued optimization. J. Aust. Math. Soc. 2003, 75, 221–232. [CrossRef]
33. Strasser, S.; Goodman, R.; Sheppard, J.; Butcher, S. A new discrete particle swarm optimization algorithm. In Proceedings of the

Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; pp. 53–60.
34. Korte, B.; Vygen, K. Combinatorial Optimization, 3rd ed.; Algorithms and Combinatorics; Springer: Berlin/Heidelberg,

Germany, 2005.
35. Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
36. Kennedy, J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance. In Proceedings of

the Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1931–1938.
37. Kennedy, J.; Mendes, R. Population structure and particle swarm performance. In Proceedings of the Congress on Evolutionary

Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1671–1676.
38. Shi, Y.; Eberhart, R.C. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE International Conference on Evolutionary

Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.
39. Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization method for constrained optimization problems. Intell. Technol.-

Theory Appl. New Trends Intell. Technol. 2002, 76, 214–220.
40. Tandon, V.; El-Mounayri, H.; Kishawy, H. NC end milling optimization using evolutionary computation. Int. J. Mach. Tools

Manuf. 2002, 42, 595–605. [CrossRef]
41. Shi, Y.; Krohling, R.A. Co-evolutionary particle swarm optimization to solve min-max problems. In Proceedings of the Congress

on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1682–1687.
42. Laskari, E.C.; Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization for integer programming. In Proceedings of the

Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1582–1587.
43. Hu, X.; Eberhart, R. Solving constrained nonlinear optimization problems with particle swarm optimization. In Proceedings of

the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 14–18 July 2002; Citeseer: Forest Grove,
OR, USA, 2002; Volume 5, pp. 203–206.

44. El-Gallad, A.; El-Hawary, M.; Sallam, A.; Kalas, A. Enhancing the particle swarm optimizer via proper parameters selection.
In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Winnipeg, MB, Canada, 12–15 May 2002;
Volume 2, pp. 792–797.

45. Venter, G.; Sobieszczanski-Sobieski, J. Multidisciplinary optimization of a transport aircraft wing using particle swarm optimiza-
tion. Struct. Multidiscip. Optim. 2004, 26, 121–131. [CrossRef]

46. Venter, G.; Sobieszczanski-Sobieski, J. Particle swarm optimization. AIAA J. 2003, 41, 1583–1589. [CrossRef]
47. Jordehi, A.R. A review on constraint handling strategies in particle swarm optimisation. Neural Comput. Appl. 2015, 26, 1265–1275.

[CrossRef]

http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1016/S0377-2217(02)00823-8
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1515/crll.1861.58.181.
http://dx.doi.org/10.1017/S1446788700003736
http://dx.doi.org/10.1016/S0890-6955(01)00151-1
http://dx.doi.org/10.1007/s00158-003-0318-3
http://dx.doi.org/10.2514/2.2111
http://dx.doi.org/10.1007/s00521-014-1808-5


Mathematics 2023, 11, 2980 34 of 36

48. Eberhart, R.C.; Yuhui, S. Particle swarm optimization: Developments, applications and resources. In Proceedings of the Congress
on Evolutionary Computation, Seoul, Republic of Korea, 27–30 May 2001; Volume 1, pp. 81–86.

49. Song, M.; Gu, G. Research on particle swarm optimization: A review. In Proceedings of the International Conference on Machine
Learning and Cybernetics, Shanghai, China, 26–29 August 2004; Volume 4, pp. 2236–2241.

50. Jain, N.K.; Nangia, U.; Jain, J. A review of particle swarm optimization. J. Inst. Eng. 2018, 99, 407–411. [CrossRef]
51. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.
52. Schoofs, L.; Naudts, B. Swarm intelligence on the binary constraint satisfaction problem. In Proceedings of the 2002 Congress on

Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1444–1449.
53. Clerc, M. Discrete particle swarm optimization, illustrated by the traveling salesman problem. In New Optimization Techniques in

Engineering; Springer: Berlin/Heidelberg, Germany, 2004; pp. 219–239.
54. Parsons, C. The structuralist view of mathematical objects. Synthese 1990, 84, 303–346. [CrossRef]
55. Correa, E.S.; Freitas, A.A.; Johnson, C.G. A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics

data set. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July
2006; pp. 35–42.

56. Neethling, M.; Engelbrecht, A.P. Determining RNA secondary structure using set-based particle swarm optimization. In
Proceedings of the IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006;
pp. 1670–1677.

57. Veenhuis, C.B. A set-based particle swarm optimization method. In Proceedings of the International Conference on Parallel
Problem Solving from Nature—PPSN X: 10th International Conference, Dortmund, Germany, 13–17 September 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 971–980.

58. Chen, E.; Zhang, J.; Chung, H.S.H.; Zhong, W.; Wu, W.; Shi, Y. A novel set-based particle swarm optimization method for discrete
optimization problems. IEEE Trans. Evol. Comput. 2009, 14, 278–300. [CrossRef]

59. Khan, S.A.; Engelbrecht, A.P. A fuzzy particle swarm optimization algorithm for computer communication network topology
design. Appl. Intell. 2012, 36, 161–177. [CrossRef]

60. Khan, S.A.; Engelbrecht, A.P. A new fuzzy operator and its application to topology design of distributed local area networks. Inf.
Sci. 2007, 177, 2692–2711. [CrossRef]

61. Mohiuddin, M.A.; Khan, S.A.; Engelbrecht, A.P. Fuzzy particle swarm optimization algorithms for the open shortest path first
weight setting problem. Appl. Intell. 2016, 45, 598–621. [CrossRef]

62. Kling, R.; Banerjee, P. Optimization by simulated evolution with applications to standard cell placement. In Proceedings of the
27th ACM/IEEE Design Automation Conference, Orlando, FL, USA, 24–27 June 1991; pp. 20–25.

63. Larrañaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation; Springer Science &
Business Media: New York, NY, USA, 2001; Volume 2.

64. Fan, J.; Li, Y.; Tang, L.; Wu, G. RoughPSO: Rough set-based particle swarm optimisation. Int. J. Bio-Inspired Comput. 2018,
12, 245–253. [CrossRef]

65. Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [CrossRef]
66. Langeveld, J.; Engelbrecht, A.P. A generic set-based particle swarm optimization algorithm. In Proceedings of the International

Conference on Swarm Intelligence, Chongqing, China, 12–15 June 2011; pp. 1–10.
67. Langeveld, J. Set-Based Particle Swarm Optimization. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2016.
68. Erwin, K.H.; Engelbrecht, A.P. Diversity measures for set-based meta-heuristics. In Proceedings of the International Conference

on Soft Computing & Machine Intelligence, Stockholm, Sweden, 26–27 November 2020; pp. 45–50.
69. Engelbrecht, A.P. Heterogeneous particle swarm optimization. In Proceedings of the Swarm Intelligence: 7th International

Conference, ANTS 2010, Brussels, Belgium, 8–10 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 191–202.
70. Olorunda, O.; Engelbrecht, A.P. Measuring exploration/exploitation in particle swarms using swarm diversity. In Proceedings of

the Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 1128–1134.
71. Erwin, K.H.; Engelbrecht, A.P. Improved Hamming Diversity Measure for Set-Based Optimization Algorithms. In Proceedings of

the Advances in Swarm Intelligence, Xi’an, China, 15–19 July 2022; Tan, Y., Shi, Y., Niu, B., Eds.; Springer International Publishing:
Cham, Switzerland, 2022; pp. 39–47.

72. Langeveld, J.; Engelbrecht, A.P. Set-based particle swarm optimization applied to the multidimensional knapsack problem.
Swarm Intell. 2012, 6, 297–342. [CrossRef]

73. Erwin, K.H.; Engelbrecht, A.P. Multi-Guide Set-Based Particle Swarm Optimization for Multi-Objective Portfolio Optimization.
Algorithms 2023, 16, 62. [CrossRef]

74. Scheepers, C.; Engelbrecht, A.P.; Cleghorn, C.W. Multi-guide particle swarm optimization for multi-objective optimization:
Empirical and stability analysis. Swarm Intell. 2019, 13, 245–276. [CrossRef]

75. Ehrgott, M. Multicriteria Optimization; Springer Science & Business Media: New York, NY, USA, 2005; Volume 491.
76. Coello Coello, C.A.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems; Springer:

Berlin/Heidelberg, Germany, 2007; Volume 5.
77. Hu, X.; Eberhart, R.C. Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of

the Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1677–1681.

http://dx.doi.org/10.1007/s40031-018-0323-y
http://dx.doi.org/10.1007/BF00485186
http://dx.doi.org/10.1109/TEVC.2009.2030331
http://dx.doi.org/10.1007/s10489-010-0251-2
http://dx.doi.org/10.1016/j.ins.2007.01.031
http://dx.doi.org/10.1007/s10489-016-0776-0
http://dx.doi.org/10.1504/IJBIC.2018.096480
http://dx.doi.org/10.1007/BF01001956
http://dx.doi.org/10.1007/s11721-012-0073-4
http://dx.doi.org/10.3390/a16020062
http://dx.doi.org/10.1007/s11721-019-00171-0


Mathematics 2023, 11, 2980 35 of 36

78. Coello Coello, C.A.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the
Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1051–1056.

79. Fieldsend, J.E.; Singh, S. A multi-objective algorithm based upon particle swarm optimisation, an efficient data structure and
turbulence. In Proceedings of the UK Workshop on Computational Intelligence, Birmingham, UK, 2–4 September 2002; pp. 34–44.

80. Mostaghim, S.; Teich, J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In
Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 24–26 April 2003; pp. 26–33.

81. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast elitist non-dominated sorting genetic algorithm for multi-objective
optimization: NSGA-II. In Proceedings of the International Conference on Parallel Problem Solving from Nature PPSN VI: 6th
International Conference, Paris, France, 18–20 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 849–858.

82. Gens, G.; Levner, E. Complexity of approximation algorithms for combinatorial problems: A survey. ACM SIGACT News 1980,
12, 52–65. [CrossRef]

83. Lorie, J.H.; Savage, L.J. Three problems in rationing capital. J. Bus. 1955, 28, 229–239. [CrossRef]
84. Furche, T.; Gottlob, G.; Libkin, L.; Orsi, G.; Paton, N.W. Data Wrangling for Big Data: Challenges and Opportunities. In

Proceedings of the EDBT, Bordeaux, France, 15–16 March 2016; Volume 16, pp. 473–478.
85. Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv.

2017, 50, 1–45. [CrossRef]
86. Oldewage, E.T.; Engelbrecht, A.P.; Cleghorn, C.W. Movement patterns of a particle swarm in high dimensional spaces. Inf. Sci.

2020, 512, 1043–1062. [CrossRef]
87. Engelbrecht, A.P.; Grobler, J.; Langeveld, J. Set-Based Particle Swarm Optimization for the Feature Selection Problem. Eng. Appl.

Artif. Intell. 2019, 85, 324–336. [CrossRef]
88. Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91.
89. Chang, T.; Yang, S.; Chang, K. Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst.

Appl. 2009, 36, 10529–10537. [CrossRef]
90. Liagkouras, K. A new three-dimensional encoding multiobjective evolutionary algorithm with application to the portfolio

optimization problem. Knowl.-Based Syst. 2019, 163, 186–203. [CrossRef]
91. Liu, J.; Jin, X.; Wang, T.; Yuan, Y. Robust multi-period portfolio model based on prospect theory and ALMV-PSO algorithm.

Expert Syst. Appl. 2015, 42, 7252–7262. [CrossRef]
92. Meghwani, S.S.; Thakur, M. Multi-objective heuristic algorithms for practical portfolio optimization and rebalancing with

transaction cost. Appl. Soft Comput. 2018, 67, 865–894. [CrossRef]
93. Stuart, A. Portfolio selection: Efficient diversification of investments. Q. J. Oper. Res. 1959, 10, 253. [CrossRef]
94. Zhu, H.; Wang, Y.; Wang, K.; Chen, Y. Particle Swarm Optimization for the constrained portfolio optimization problem. Expert

Syst. Appl. 2011, 38, 10161–10169. [CrossRef]
95. Erwin, K.H.; Engelbrecht, A.P. Set-Based Particle Swarm Optimization for Portfolio Optimization. In Proceedings of the Twelfth

International Conference on Swarm Intelligence, Barcelona, Spain, 26–28 October 2020; pp. 333–339.
96. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; TIK-Report; ETH Zurich: Zurich,

Swizerland, 2001; Volume 103.
97. Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [CrossRef]
98. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
99. Van Zyl, J.; Engelbrecht, A.P. Polynomial Approximation Using Set-Based Particle Swarm Optimization. In Proceedings of

the International Conference on Swarm Intelligence, Qingdao, China, 17–21 July 2021; Tan, Y., Shi, Y., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 12689, pp. 210–222.

100. Colson, B.; Marcotte, P.; Savard, G. Bilevel programming: A survey. Q. J. Oper. Res. 2005, 3, 87–107. [CrossRef]
101. Loshchilov, I.; Schoenauer, M.; Sebag, M. Adaptive Coordinate Descent. In Proceedings of the Genetic and Evolutionary

Computation Conference, Dublin, Ireland, 12–16 July 2011; pp. 885–892.
102. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.
103. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998,

13, 18–28. [CrossRef]
104. Cortes, C.; Vapnik, V.N. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
105. Aizerman, A. Theoretical foundations of the potential function method in pattern recognition learning. Autom. Remote Control

1964, 25, 821–837.
106. Schölkopf, B.; Smola, A.; Müller, K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998,

10, 1299–1319. [CrossRef]
107. Mercer, J. Functions of positive and negative type, and their connection the theory of integral equations. Philos. Trans. R. Soc.

Lond. 1909, 209, 415–446.
108. Nel, A.; Engelbrecht, A.P. Set-Based Particle Swarm Optimisation Approach to Training a Support Vector Machine. under review.
109. Tomek, I. Two Modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, SMC-6, 769–772.
110. Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. On clustering validation techniques. J. Intell. Inf. Syst. 2001, 17, 107–145. [CrossRef]

http://dx.doi.org/10.1145/1008861.1008867
http://dx.doi.org/10.1086/294081
http://dx.doi.org/10.1145/3136625
http://dx.doi.org/10.1016/j.ins.2019.09.057
http://dx.doi.org/10.1016/j.engappai.2019.06.008
http://dx.doi.org/10.1016/j.eswa.2009.02.062
http://dx.doi.org/10.1016/j.knosys.2018.08.025
http://dx.doi.org/10.1016/j.eswa.2015.04.063
http://dx.doi.org/10.1016/j.asoc.2017.09.025
http://dx.doi.org/10.2307/3006625
http://dx.doi.org/10.1016/j.eswa.2011.02.075
http://dx.doi.org/10.1109/72.97934
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1007/s10288-005-0071-0
http://dx.doi.org/10.1109/5254.708428
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1023/A:1012801612483


Mathematics 2023, 11, 2980 36 of 36

111. Theodoridis, S.; Koutroumbas, K. Clustering: Basic concepts. Pattern Recognit. 2006, 3, 483–516.
112. Omran, M.G.H.; Engelbrecht, A.P.; Salman, A. An overview of clustering methods. Intell. Data Anal. 2007, 11, 583–605. [CrossRef]
113. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Berkeley

Symposium on Mathematics, Statistics, and Probability, Berkeley, CA, USA, 21 June–18 July 1965; p. 281.
114. Kaufman, L.; Rousseeuw, P.J. Partitioning around medoids (Program PAM). Find. Groups Data Introd. Clust. Anal. 1990,

344, 68–125.
115. MacLahlan, G.; Peel, D. Finite Mixture Models; John & Sons: Hoboken, NJ, USA, 2000.
116. Reynolds, D.A. Gaussian mixture models. Encycl. Biom. 2009, 741, 659–663.
117. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4
August 1996.

118. Brown, L.; Engelbrecht, A.P. Set-based Particle Swarm Optimization for Data Clustering. In Proceedings of the 6th International
Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Seoul, Republic of Korea, 9–10 April 2022; pp. 43–49.

119. De Wet, R.M. Set-Based Particle Swarm Optimization for Medoids-Based Clustering of Stationary Data. Master’s Thesis,
Stellenbosch University, Stellenbosch, South Africa, 2023.

120. De Wet, R.M.; Engelbrecht, A.P. Set-based Particle Swarm Optimization for Data Clustering: Comparison and Analysis of Control
Parameters. In Proceedings of the International Conference on Intelligent Systems, Metaheuristics and Swarm Intelligence,
Kuala Lumpur, Malaysia, 23 April 2023; Association for Computer Machinery: New York, NY, USA, 2023.

121. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,
20, 53–65. [CrossRef]

122. Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 1973,
3, 32–57. [CrossRef]

123. Setiono, R.; Liu, H. Understanding neural networks via rule extraction. In Proceedings of the Fourteenth International. Joint
Conference on Artificial Intelligence (IJCAI), Montreal, QC, Canada, 20–25 August 1995; Citeseer: Forest Grove, OR, USA, 1995;
Volume 1, pp. 480–485.

124. Cendrowska, J. PRISM: An algorithm for inducing modular rules. Int. J. Man-Mach. Stud. 1987, 27, 349–370. [CrossRef]
125. Quinlan, R. C4.5: Programs for Machine Learning. Mach. Learn. 1993, 16, 235–240 .
126. Cohen, W.W. Fast Effective Rule Induction. In Machine Learning Proceedings; Morgan Kaufmann: San Francisco, CA, USA, 1995;

pp. 115–123.
127. Frank, E.; Witten, I. Generating Accurate Rule Sets Without Global Optimization. In Proceedings of the Fifteenth International

Conference on Machine Learning, Madison, WI, USA, 24–27 July 1998; pp. 144–151.
128. Van Zyl, J.; Engelbrecht, A.P. Rule Induction Using Set-Based Particle Swarm Optimisation. In Proceedings of the Congress on

Evolutionary Computation, Padua, Italy, 18–23 July 2022; pp. 1–8.
129. Van Zyl, J. Rule Induction with Swarm Intelligence. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2023.
130. van den Bergh, F.; Engelbrecht, A.P. A study of particle swarm optimization particle trajectories. Inf. Sci. 2006, 176, 937–971.

[CrossRef]
131. Harrison, K.R.; Ombuki-Berman, B.M.; Engelbrecht, A.P. The parameter configuration landscape: A case study on particle

swarm optimization. In Proceedings of the Congress on Evolutionary Computation, Wellington, New Zealand, 10–13 June 2019;
pp. 808–814.

132. Harrison, K.R.; Ombuki-Berman, B.M.; Engelbrecht, A.P. An analysis of control parameter importance in the particle swarm
optimization algorithm. In Proceedings of the Advances in Swarm Intelligence: 10th International Conference (ICSI 2019),
Chiang Mai, Thailand, 26–30 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 93–105.

133. Erwin, K.H.; Engelbrecht, A. Control parameter sensitivity analysis of the multi-guide particle swarm optimization algorithm. In
Proceedings of the Genetic and Evolutionary Computation Conference, Prague, Czech Republic, 13–17 July 2019; pp. 22–29.

134. Harrison, K.R.; Engelbrecht, A.P.; Ombuki-Berman, B.M. Self-adaptive particle swarm optimization: A review and analysis of
convergence. Swarm Intell. 2018, 12, 187–226. [CrossRef]

135. Blackwell, T. Particle swarm optimization in dynamic environments. In Evolutionary Computation in Dynamic and Uncertain
Environments; Springer: Berlin/Heidelberg, Germany, 2007; pp. 29–49.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3233/IDA-2007-11602
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1016/S0020-7373(87)80003-2
http://dx.doi.org/10.1016/j.ins.2005.02.003
http://dx.doi.org/10.1007/s11721-017-0150-9

	Introduction
	Discrete and Combinatorial Optimisation Problems
	Particle Swarm Optimisation
	Particle Swarm Optimisation Algorithms for Discrete Optimisation Problems
	Discrete Particle Swarm Optimisation
	Set Particle Swarm Optimisation
	Set Swarm Optimisation
	Set-Based Particle Swarm Optimisation
	Fuzzy Particle Swarm Optimisation
	Fuzzy Evolutionary Particle Swarm Optimisation
	Integer and Categorical Particle Swarm Optimisation
	Rough Set-Based Particle Swarm Optimisation
	The Search for Rigorously Defined Set-Based Particle Swarm Optimisation

	Set-Based Particle Swarm Optimisation
	Set-Based Concepts
	Positions and Velocities
	Set-Based Operators

	Set-Based Update Equations
	Exploration and Exploitation Mechanisms
	Set-Based Diversity Measures
	Control Parameter Sensitivity
	Algorithm

	Multi-Guide Set-Based Particle Swarm Optimisation
	Multi-Objective Optimisation
	Multi-Guide Set-Based Particle Swarm Optimisation

	Existing Applications
	Multi-Dimensional Knapsack Problem
	Background
	Multi-Dimensional Knapsack Problem Using Set-Based Particle Swarm Optimisation

	Feature Selection Problem
	Background
	Feature Selection Using Set-Based Particle Swarm Optimisation

	Portfolio Optimisation
	Background
	Portfolio Optimisation Using Set-Based Particle Swarm Optimisation
	Multi-Objective Portfolio Optimisation Using Set-Based Particle Swarm Optimisation

	Polynomial Approximation
	Background
	Polynomial Approximation Using Set-Based Particle Swarm Optimisation

	Support Vector Machine Training
	Background
	Support Vector Machine Training Using Set-Based Particle Swarm Optimisation

	Clustering
	Background
	Clustering Using Set-Based Particle Swarm Optimisation

	Rule Induction
	Background
	Rule Induction Using Set-Based Particle Optimisation
	Multi-Objective Rule Induction Using Set-Based Particle Optimisation


	Conclusions
	Future Work
	Universe Exploration Study
	Swarm Convergence Study
	Hyperparameter Sensitivity Analysis
	Hyperparameter Self-Adaptation
	Improved Diversity Injection Mechanisms
	High Dimensional Performance Evaluation
	Dynamic Problem Adaptation
	Constrained Problem Adaptation

	References

